Date Palm Fruit ( Phoenix dactylifera): Effects on Vascular Health and Future Research Directions

Affiliations

28 April 2021

-

doi: 10.3390/ijms22094665


Abstract

Cardiovascular disease is a leading cause of death globally, presenting an immense public and economic burden. Studies on cardioprotective foods and their bioactive components are needed to address both personal and public health needs. Date fruit is rich in polyphenols, particularly flavonoids, certain micronutrients, and dietary fiber, which can impact vascular health, and have the potential to attenuate vascular disease in humans. Data from in vitro and animal studies report that consumption of date fruit or extracts can modulate select markers of vascular health, particularly plasma lipid levels including triglycerides and cholesterol, indices of oxidative stress and inflammation, but human data is scant. More investigation is needed to better characterize date polyphenols and unique bioactive compounds or fractions, establish safe and effective levels of intake, and delineate underlying mechanisms of action. Implementing scientific rigor in clinical trials and assessment of functional markers of vascular disease, such as flow-mediated dilation and peripheral arterial tonometry, along with gut microbiome profiles would provide useful information with respect to human health. Emerging data supports the notion that intake of date fruit and extracts can be a useful component of a healthy lifestyle for those seeking beneficial effects on vascular health.

Keywords: cardiovascular; endothelial function; flavonoids; inflammation; lipids; oxidative stress; polyphenols.

Conflict of interest statement

The authors declare no conflict of interest.


References

  1.  
    1. Ezzati M., Riboli E. Behavioral and dietary risk factors for noncommunicable diseases. N. Engl. J. Med. 2013;369:954–964. doi: 10.1056/NEJMra1203528. - DOI - PubMed
  2.  
    1. Eyre H., Kahn R., Robertson R.M. Preventing cancer, cardiovascular disease, and diabetes: A common agenda for the American Cancer Society, the American Diabetes Association, and the American Heart Association. CA Cancer J. Clin. 2004;54:190–207. doi: 10.3322/canjclin.54.4.190. - DOI - PubMed
  3.  
    1. Mozaffarian D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation. 2016;133:187–225. doi: 10.1161/CIRCULATIONAHA.115.018585. - DOI - PMC - PubMed
  4.  
    1. Micha R., Penalvo J.L., Cudhea F., Imamura F., Rehm C.D., Mozaffarian D. Association Between Dietary Factors and Mortality from Heart Disease, Stroke, and Type 2 Diabetes in the United States. JAMA. 2017;317:912–924. doi: 10.1001/jama.2017.0947. - DOI - PMC - PubMed
  5.  
    1. McGuire S. Scientific Report of the 2015 Dietary Guidelines Advisory Committee. Washington, DC: US Departments of Agriculture and Health and Human Services, 2015. Adv. Nutr. 2016;7:202–204. doi: 10.3945/an.115.011684. - DOI - PMC - PubMed
  6.  
    1. Mursu J., Virtanen J.K., Tuomainen T.P., Nurmi T., Voutilainen S. Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Am. J. Clin. Nutr. 2014;99:328–333. doi: 10.3945/ajcn.113.069641. - DOI - PubMed
  7.  
    1. Zurbau A., Au-Yeung F., Blanco Mejia S., Khan Tauseef A., Vuksan V., Jovanovski E., Leiter Lawrence A., Kendall Cyril W.C., Jenkins David J.A., Sievenpiper John L. Relation of Different Fruit and Vegetable Sources with Incident Cardiovascular Outcomes: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. J. Am. Heart Assoc. 2020;9:e017728. doi: 10.1161/JAHA.120.017728. - DOI - PMC - PubMed
  8.  
    1. Liu R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013;4:384S–392S. doi: 10.3945/an.112.003517. - DOI - PMC - PubMed
  9.  
    1. Tuso P., Stoll S.R., Li W.W. A plant-based diet, atherogenesis, and coronary artery disease prevention. Perm. J. 2015;19:62–67. doi: 10.7812/TPP/14-036. - DOI - PMC - PubMed
  10.  
    1. Parmenter B.H., Croft K.D., Hodgson J.M., Dalgaard F., Bondonno C.P., Lewis J.R., Cassidy A., Scalbert A., Bondonno N.P. An overview and update on the epidemiology of flavonoid intake and cardiovascular disease risk. Food Funct. 2020;11:6777–6806. doi: 10.1039/D0FO01118E. - DOI - PubMed
  11.  
    1. Williamson G., Kay C.D., Crozier A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Compr. Rev. Food Sci. Food Saf. 2018;17:1054–1112. doi: 10.1111/1541-4337.12351. - DOI - PubMed
  12.  
    1. Chong M.F., Macdonald R., Lovegrove J.A. Fruit polyphenols and CVD risk: A review of human intervention studies. Br. J. Nutr. 2010;104(Suppl. S3):S28–S39. doi: 10.1017/S0007114510003922. - DOI - PubMed
  13.  
    1. Basu A., Fu D.X., Wilkinson M., Simmons B., Wu M., Betts N.M., Du M., Lyons T.J. Strawberries decrease atherosclerotic markers in subjects with metabolic syndrome. Nutr. Res. 2010;30:462–469. doi: 10.1016/j.nutres.2010.06.016. - DOI - PMC - PubMed
  14.  
    1. Ed Nignpense B., Chinkwo K.A., Blanchard C.L., Santhakumar A.B. Polyphenols: Modulators of Platelet Function and Platelet Microparticle Generation? Int. J. Mol. Sci. 2019;21:146. doi: 10.3390/ijms21010146. - DOI - PMC - PubMed
  15.  
    1. Eid N., Osmanova H., Natchez C., Walton G., Costabile A., Gibson G., Rowland I., Spencer J.P. Impact of palm date consumption on microbiota growth and large intestinal health: A randomised, controlled, cross-over, human intervention study. Br. J. Nutr. 2015;114:1226–1236. doi: 10.1017/S0007114515002780. - DOI - PubMed
  16.  
    1. Hong Y.J., Tomas-Barberan F.A., Kader A.A., Mitchell A.E. The flavonoid glycosides and procyanidin composition of Deglet Noor dates (Phoenix dactylifera) J. Agric. Food Chem. 2006;54:2405–2411. doi: 10.1021/jf0581776. - DOI - PubMed
  17.  
    1. Al-Alawi R.A., Al-Mashiqri J.H., Al-Nadabi J.S.M., Al-Shihi B.I., Baqi Y. Date Palm Tree (Phoenix dactylifera L.): Natural Products and Therapeutic Options. Front. Plant. Sci. 2017;8:845. doi: 10.3389/fpls.2017.00845. - DOI - PMC - PubMed
  18.  
    1. Chaira N., Smaali M.I., Martinez-Tomé M., Mrabet A., Murcia M.A., Ferchichi A. Simple phenolic composition, flavonoid contents and antioxidant capacities in water-methanol extracts of Tunisian common date cultivars (Phoenix dactylifera L.) Int. J. Food Sci. Nutr. 2009;60(Suppl. S7):316–329. doi: 10.1080/09637480903124333. - DOI - PubMed
  19.  
    1. Al-Farsi M., Alasalvar C., Morris A., Baron M., Shahidi F. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J. Agric. Food Chem. 2005;53:7592–7599. doi: 10.1021/jf050579q. - DOI - PubMed
  20.  
    1. Zhang C.R., Aldosari S.A., Vidyasagar P.S., Nair K.M., Nair M.G. Antioxidant and anti-inflammatory assays confirm bioactive compounds in Ajwa date fruit. J. Agric. Food Chem. 2013;61:5834–5840. doi: 10.1021/jf401371v. - DOI - PubMed
  21.  
    1. Al-Qarawi A.A., Abdel-Rahman H., Ali B.H., Mousa H.M., El-Mougy S.A. The ameliorative effect of dates (Phoenix dactylifera L.) on ethanol-induced gastric ulcer in rats. J. Ethnopharmacol. 2005;98:313–317. doi: 10.1016/j.jep.2005.01.023. - DOI - PubMed
  22.  
    1. Marzouk H.A., Kassem H.A. Improving fruit quality, nutritional value and yield of Zaghloul dates by the application of organic and/or mineral fertilizers. Sci. Hortic. 2011;127:249–254. doi: 10.1016/j.scienta.2010.10.005. - DOI
  23.  
    1. Alalwan T.A., Perna S., Mandeel Q.A., Abdulhadi A., Alsayyad A.S., D’Antona G., Negro M., Riva A., Petrangolini G., Allegrini P., et al. Effects of Daily Low-Dose Date Consumption on Glycemic Control, Lipid Profile, and Quality of Life in Adults with Pre- and Type 2 Diabetes: A Randomized Controlled Trial. Nutrients. 2020;12:217. doi: 10.3390/nu12010217. - DOI - PMC - PubMed
  24.  
    1. Ahmed J., Aljasass F., Siddiq M. Date Fruit Composition and Nutrition. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2014. pp. 261–284.
  25.  
    1. Miller C.J., Dunn E.V., Hashim I.B. The glycaemic index of dates and date/yoghurt mixed meals. Are dates ‘the candy that grows on trees’? Eur. J. Clin. Nutr. 2003;57:427–430. doi: 10.1038/sj.ejcn.1601565. - DOI - PubMed
  26.  
    1. Al-Farsi M., Lee C. Nutritional and Functional Properties of Dates: A Review. Crit. Rev. Food Sci. Nutr. 2008;48:877–887. doi: 10.1080/10408390701724264. - DOI - PubMed
  27.  
    1. Tengberg M. Beginnings and early history of date palm garden cultivation in the Middle East. J. Arid Environ. 2012;86:139–147. doi: 10.1016/j.jaridenv.2011.11.022. - DOI
  28.  
    1. Alalwan T.A., Mandeel Q.A., Al-Sarhani L. Traditional plant-based foods and beverages in Bahrain. J. Ethn. Foods. 2017;4:274–283. doi: 10.1016/j.jef.2017.10.003. - DOI
  29.  
    1. Vayalil P.K. Date fruits (Phoenix dactylifera Linn): An emerging medicinal food. Crit. Rev. Food Sci. Nutr. 2012;52:249–271. doi: 10.1080/10408398.2010.499824. - DOI - PubMed
  30.  
    1. Al-Khalifah N.S., Askari E. Molecular phylogeny of date palm (Phoenix dactylifera L.) cultivars from Saudi Arabia by DNA fingerprinting. Theor. Appl. Genet. 2003;107:1266–1270. doi: 10.1007/s00122-003-1369-y. - DOI - PubMed
  31.  
    1. Baliga M.S., Baliga B.R.V., Kandathil S.M., Bhat H.P., Vayalil P.K. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.) Food Res. Int. 2011;44:1812–1822. doi: 10.1016/j.foodres.2010.07.004. - DOI
  32.  
    1. Al-Farsi M., Morris A., Baron M. Functional properties of Omani dates (Phoenix dactylifera L.) Acta Hortic. 2007;736:479–487. doi: 10.17660/ActaHortic.2007.736.46. - DOI
  33.  
    1. Sawaya W.N., Khatchadourian H.A., Khalil J.K., Safi W.M., Al-Shalhat A. Growth and Compositional Changes During the Various Developmental Stages of Some Saudi Arabian Date Cultivars. J. Food Sci. 1982;47:1489–1492. doi: 10.1111/j.1365-2621.1982.tb04967.x. - DOI
  34.  
    1. Sawaya W.N., Khalil J.K., Safi W.N., Al-Shalhar A. Physical and chemical characterization of three Saudi date cultivars at various stages of development. J. Inst. Food Sci. Technol. 1983;16:87–92. doi: 10.1016/S0315-5463(83)72065-1. - DOI
  35.  
    1. Eid N.M., Al-Awadi B., Vauzour D., Oruna-Concha M.J., Spencer J.P. Effect of cultivar type and ripening on the polyphenol content of date palm fruit. J. Agric. Food Chem. 2013;61:2453–2460. doi: 10.1021/jf303951e. - DOI - PubMed
  36.  
    1. Borochov-Neori H., Judeinstein S., Greenberg A., Volkova N., Rosenblat M., Aviram M. Antioxidant and antiatherogenic properties of phenolic acid and flavonol fractions of fruits of ‘Amari’ and ‘Hallawi’ date (Phoenix dactylifera L.) varieties. J. Agric. Food Chem. 2015;63:3189–3195. doi: 10.1021/jf506094r. - DOI - PubMed
  37.  
    1. Matloob M., Balakita A. Phenolic Content of Various Date Palms Fruits and Vinegars from Iraq. Int. J. Chem. Sci. 2016;14:1893.
  38.  
    1. Aguilar G., Sánchez M., Martínez-Téllez M., Olivas G., Alvarez-Parrilla E., De la Rosa L. Bioactive compounds in fruits: Health benefits and effect of storage conditions. Stewart Postharvest Rev. 2008;4:1–10. doi: 10.2212/spr.2008.3.8. - DOI
  39.  
    1. Maqsood S., Adiamo O., Ahmad M., Mudgil P. Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chem. 2020;308:125522. doi: 10.1016/j.foodchem.2019.125522. - DOI - PubMed
  40.  
    1. Al-Shahib W., Marshall R.J. The fruit of the date palm: Its possible use as the best food for the future? Int. J. Food Sci. Nutr. 2003;54:247–259. doi: 10.1080/09637480120091982. - DOI - PubMed
  41.  
    1. Barber T.M., Kabisch S., Pfeiffer A.F.H., Weickert M.O. The Health Benefits of Dietary Fibre. Nutrients. 2020;12:3209. doi: 10.3390/nu12103209. - DOI - PMC - PubMed
  42.  
    1. El-Sohaimy S.A., Hafez E.E. Biochemical and nutritional characterizations of date palm fruits (Phoenix dactylifera L.) J. Appl. Sci. Res. 2010;6:1060–1067.
  43.  
    1. Virani S.S., Alonso A., Benjamin E.J., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Chang A.R., Cheng S., Delling F.N., et al. Heart Disease and Stroke Statistics-2020 Update: A Report from the American Heart Association. Circulation. 2020;141:e139–e596. doi: 10.1161/CIR.0000000000000757. - DOI - PubMed
  44.  
    1. Benjamin E.J., Muntner P., Alonso A., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Chang A.R., Cheng S., Das S.R., et al. Heart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association. Circulation. 2019;139:e56–e528. doi: 10.1161/CIR.0000000000000659. - DOI - PubMed
  45.  
    1. Virani S.S., Alonso A., Aparicio H.J., Benjamin E.J., Bittencourt M.S., Callaway C.W., Carson A.P., Chamberlain A.M., Cheng S., Delling F.N., et al. Heart Disease and Stroke Statistics-2021 Update: A Report from the American Heart Association. Circulation. 2021;143:e254–e743. doi: 10.1161/CIR.0000000000000950. - DOI - PubMed
  46.  
    1. Rudolf J., Lewandrowski K.B. Cholesterol, lipoproteins, high-sensitivity c-reactive protein, and other risk factors for atherosclerosis. Clin. Lab. Med. 2014;34:113–127. doi: 10.1016/j.cll.2013.11.003. - DOI - PubMed
  47.  
    1. American Diabetes Association 10 Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes—2020. Diabetes Care. 2020;43:S125–S150. doi: 10.2337/dc20-S010. - DOI - PubMed
  48.  
    1. Strain W.D., Paldánius P.M. Diabetes, cardiovascular disease and the microcirculation. Cardiovasc. Diabetol. 2018;17:57. doi: 10.1186/s12933-018-0703-2. - DOI - PMC - PubMed
  49.  
    1. Geovanini G.R., Libby P. Atherosclerosis and inflammation: Overview and updates. Clin. Sci. 2018;132:1243–1252. doi: 10.1042/CS20180306. - DOI - PubMed
  50.  
    1. Davì G., Patrono C. Platelet activation and atherothrombosis. N. Engl. J. Med. 2007;357:2482–2494. doi: 10.1056/NEJMra071014. - DOI - PubMed
  51.  
    1. Libby M.P., Ridker M.P., Maseri M.A. Inflammation and Atherosclerosis. Circ. J. Am. Heart Assoc. 2002;105:1135–1143. doi: 10.1161/hc0902.104353. - DOI - PubMed
  52.  
    1. Shimokawa H. Primary Endothelial Dysfunction: Atherosclerosis. J. Mol. Cell. Cardiol. 1999;31:23–37. doi: 10.1006/jmcc.1998.0841. - DOI - PubMed
  53.  
    1. Quyyumi A.A. Endothelial function in health and disease: New insights into the genesis of cardiovascular disease. Am. J. Med. 1998;105:32S–39S. doi: 10.1016/S0002-9343(98)00209-5. - DOI - PubMed
  54.  
    1. de Nigris F., Cacciatore F., Mancini F.P., Vitale D.F., Mansueto G., D’Armiento F.P., Schiano C., Soricelli A., Napoli C. Epigenetic Hallmarks of Fetal Early Atherosclerotic Lesions in Humans. JAMA Cardiol. 2018 doi: 10.1001/jamacardio.2018.3546. - DOI - PMC - PubMed
  55.  
    1. Flammer A.J., Anderson T., Celermajer D.S., Creager M.A., Deanfield J., Ganz P., Hamburg N.M., Luscher T.F., Shechter M., Taddei S., et al. The assessment of endothelial function: From research into clinical practice. Circulation. 2012;126:753–767. doi: 10.1161/CIRCULATIONAHA.112.093245. - DOI - PMC - PubMed
  56.  
    1. Premer C., Kanelidis A.J., Hare J.M., Schulman I.H. Rethinking Endothelial Dysfunction as a Crucial Target in Fighting Heart Failure. Mayo Clin. Proc. 2019;3:1–13. doi: 10.1016/j.mayocpiqo.2018.12.006. - DOI - PMC - PubMed
  57.  
    1. Blumenthal J.A., Babyak M.A., Hinderliter A., Watkins L.L., Craighead L., Lin P.H., Caccia C., Johnson J., Waugh R., Sherwood A. Effects of the DASH diet alone and in combination with exercise and weight loss on blood pressure and cardiovascular biomarkers in men and women with high blood pressure: The ENCORE study. Arch. Intern. Med. 2010;170:126–135. doi: 10.1001/archinternmed.2009.470. - DOI - PMC - PubMed
  58.  
    1. James P.A., Oparil S., Carter B.L., Cushman W.C., Dennison-Himmelfarb C., Handler J., Lackland D.T., LeFevre M.L., MacKenzie T.D., Ogedegbe O., et al. 2014 evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8) JAMA. 2014;311:507–520. doi: 10.1001/jama.2013.284427. - DOI - PubMed
  59.  
    1. Widmer R.J., Flammer A.J., Lerman L.O., Lerman A. The Mediterranean Diet, its Components, and Cardiovascular Disease. Am. J. Med. 2014 doi: 10.1016/j.amjmed.2014.10.014. - DOI - PMC - PubMed
  60.  
    1. Braga F.C., Serra C.P., Viana N.S.J., Oliveira A.B., Côrtes S.F., Lombardi J.A. Angiotensin-converting enzyme inhibition by Brazilian plants. Fitoterapia. 2007;78:353–358. doi: 10.1016/j.fitote.2007.02.007. - DOI - PubMed
  61.  
    1. Abdelaziz D.H., Ali S.A. The protective effect of Phoenix dactylifera L. seeds against CCl4-induced hepatotoxicity in rats. J. Ethnopharmacol. 2014;155:736–743. doi: 10.1016/j.jep.2014.06.026. - DOI - PubMed
  62.  
    1. Abdelaziz D.H., Ali S.A., Mostafa M.M. Phoenix dactylifera seeds ameliorate early diabetic complications in streptozotocin-induced diabetic rats. Pharm. Biol. 2015;53:792–799. doi: 10.3109/13880209.2014.942790. - DOI - PubMed
  63.  
    1. Al-Yahya M., Raish M., AlSaid M.S., Ahmad A., Mothana R.A., Al-Sohaibani M., Al-Dosari M.S., Parvez M.K., Rafatullah S. ‘Ajwa’ dates (Phoenix dactylifera L.) extract ameliorates isoproterenol-induced cardiomyopathy through downregulation of oxidative, inflammatory and apoptotic molecules in rodent model. Phytomedicine. 2016;23:1240–1248. doi: 10.1016/j.phymed.2015.10.019. - DOI - PubMed
  64.  
    1. El-Neweshy M.S., El-Maddawy Z.K., El-Sayed Y.S. Therapeutic effects of date palm (Phoenix dactylifera L.) pollen extract on cadmium-induced testicular toxicity. Andrologia. 2013;45:369–378. doi: 10.1111/and.12025. - DOI - PubMed
  65.  
    1. Biglari F., Alkarkhi A., Easa A. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 2008;107:1636–1641. doi: 10.1016/j.foodchem.2007.10.033. - DOI
  66.  
    1. Al-Jaouni S., Abdul-Hady S., El-Bassossy H., Salah N., Hagras M. Ajwa Nanopreparation Prevents Doxorubicin-Associated Cardiac Dysfunction: Effect on Cardiac Ischemia and Antioxidant Capacity. Integr. Cancer Ther. 2019;18:1534735419862351. doi: 10.1177/1534735419862351. - DOI - PMC - PubMed
  67.  
    1. Taleb H., Morris R.K., Withycombe C.E., Maddocks S.E., Kanekanian A.D. Date syrup-derived polyphenols attenuate angiogenic responses and exhibits anti-inflammatory activity mediated by vascular endothelial growth factor and cyclooxygenase-2 expression in endothelial cells. Nutr. Res. 2016;36:636–647. doi: 10.1016/j.nutres.2016.02.010. - DOI - PubMed
  68.  
    1. Alfaro-Viquez E., Roling B.F., Krueger C.G., Rainey C.J., Reed J.D., Ricketts M.L. An extract from date palm fruit (Phoenix dactylifera) acts as a co-agonist ligand for the nuclear receptor FXR and differentially modulates FXR target-gene expression in vitro. PLoS ONE. 2018;13:e0190210. doi: 10.1371/journal.pone.0190210. - DOI - PMC - PubMed
  69.  
    1. Alsaif M.A., Khan L.K., Alhamdan A.A.H., Alorf S.M., Harfi S.H., Al-Othman A.M., Arif Z. Effect of Dates and Gahwa (Arabian Coffee) Supplementation on Lipids in Hypercholesterolemic Hamsters. Int. J. Pharmacol. 2007;3:123–129. doi: 10.3923/ijp.2007.123.129. - DOI
  70.  
    1. Ahmed S., Khan R.A., Jamil S. Anti hyperlipidemic and hepatoprotective effects of native date fruit variety “Aseel” (Phoenix dactylifera) Pak. J. Pharm. Sci. 2016;29:1945–1950. - PubMed
  71.  
    1. Alhaider I.A., Mohamed M.E., Ahmed K.K.M., Kumar A.H.S. Date Palm (Phoenix dactylifera) Fruits as a Potential Cardioprotective Agent: The Role of Circulating Progenitor Cells. Front. Pharmacol. 2017;8 doi: 10.3389/fphar.2017.00592. - DOI - PMC - PubMed
  72.  
    1. Rock W., Rosenblat M., Borochov-Neori H., Volkova N., Judeinstein S., Elias M., Aviram M. Effects of date (Phoenix dactylifera L., Medjool or Hallawi Variety) consumption by healthy subjects on serum glucose and lipid levels and on serum oxidative status: A pilot study. J. Agric. Food Chem. 2009;57:8010–8017. doi: 10.1021/jf901559a. - DOI - PubMed
  73.  
    1. Khan T.J., Kuerban A., Razvi S.S., Mehanna M.G., Khan K.A., Almulaiky Y.Q., Faidallah H.M. In vivo evaluation of hypolipidemic and antioxidative effect of ‘Ajwa’ (Phoenix dactylifera L.) date seed-extract in high-fat diet-induced hyperlipidemic rat model. Biomed. Pharm. 2018;107:675–680. doi: 10.1016/j.biopha.2018.07.134. - DOI - PubMed
  74.  
    1. Heiss C., Jahn S., Taylor M., Real W.M., Angeli F.S., Wong M.L., Amabile N., Prasad M., Rassaf T., Ottaviani J.I., et al. Improvement of endothelial function with dietary flavanols is associated with mobilization of circulating angiogenic cells in patients with coronary artery disease. J. Am. Coll. Cardiol. 2010;56:218–224. doi: 10.1016/j.jacc.2010.03.039. - DOI - PubMed
  75.  
    1. Murphy K.J., Chronopoulos A.K., Singh I., Francis M.A., Moriarty H., Pike M.J., Turner A.H., Mann N.J., Sinclair A.J. Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Am. J. Clin. Nutr. 2003;77:1466–1473. doi: 10.1093/ajcn/77.6.1466. - DOI - PubMed
  76.  
    1. Gasper A., Hollands W., Casgrain A., Saha S., Teucher B., Dainty J.R., Venema D.P., Hollman P.C., Rein M.J., Nelson R., et al. Consumption of both low and high (-)-epicatechin apple puree attenuates platelet reactivity and increases plasma concentrations of nitric oxide metabolites: A randomized controlled trial. Arch. Biochem. Biophys. 2014;559:29–37. doi: 10.1016/j.abb.2014.05.026. - DOI - PubMed
  77.  
    1. Holt R.R., Heiss C., Kelm M., Keen C.L. The potential of flavanol and procyanidin intake to influence age-related vascular disease. J. Nutr. Gerontol. Geriatr. 2012;31:290–323. doi: 10.1080/21551197.2012.702541. - DOI - PubMed
  78.  
    1. Jimenez R., Duarte J., Perez-Vizcaino F. Epicatechin: Endothelial function and blood pressure. J. Agric. Food Chem. 2012;60:8823–8830. doi: 10.1021/jf205370q. - DOI - PubMed
  79.  
    1. Al-Dashti Y.A., Holt R.R., Stebbins C.L., Keen C.L., Hackman R.M. Dietary Flavanols: A Review of Select Effects on Vascular Function, Blood Pressure, and Exercise Performance. J. Am. Coll. Nutr. 2018;37:553–567. doi: 10.1080/07315724.2018.1451788. - DOI - PubMed
  80.  
    1. Amin H.P., Czank C., Raheem S., Zhang Q., Botting N.P., Cassidy A., Kay C.D. Anthocyanins and their physiologically relevant metabolites alter the expression of IL-6 and VCAM-1 in CD40L and oxidized LDL challenged vascular endothelial cells. Mol. Nutr. Food Res. 2015;59:1095–1106. doi: 10.1002/mnfr.201400803. - DOI - PMC - PubMed
  81.  
    1. Krga I., Monfoulet L.E., Konic-Ristic A., Mercier S., Glibetic M., Morand C., Milenkovic D. Anthocyanins and their gut metabolites reduce the adhesion of monocyte to TNFα-activated endothelial cells at physiologically relevant concentrations. Arch. Biochem. Biophys. 2016;599:51–59. doi: 10.1016/j.abb.2016.02.006. - DOI - PubMed
  82.  
    1. Li G., Lin W., Araya J.J., Chen T., Timmermann B.N., Guo G.L. A tea catechin, epigallocatechin-3-gallate, is a unique modulator of the farnesoid X receptor. Toxicol. Appl. Pharmacol. 2012;258:268–274. doi: 10.1016/j.taap.2011.11.006. - DOI - PMC - PubMed
  83.  
    1. Staruschenko A. Beneficial Effects of High Potassium. Hypertension. 2018;71:1015–1022. doi: 10.1161/HYPERTENSIONAHA.118.10267. - DOI - PMC - PubMed
  84.  
    1. Aburto N.J., Hanson S., Gutierrez H., Hooper L., Elliott P., Cappuccio F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ. 2013;346:f1378. doi: 10.1136/bmj.f1378. - DOI - PMC - PubMed
  85.  
    1. Eid N., Enani S., Walton G., Corona G., Costabile A., Gibson G., Rowland I., Spencer J.P. The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation. J. Nutr. Sci. 2014;3:e46. doi: 10.1017/jns.2014.16. - DOI - PMC - PubMed
  86.  
    1. Kaye A.D., Jeha G.M., Pham A.D., Fuller M.C., Lerner Z.I., Sibley G.T., Cornett E.M., Urits I., Viswanath O., Kevil C.G. Folic Acid Supplementation in Patients with Elevated Homocysteine Levels. Adv. Ther. 2020;37:4149–4164. doi: 10.1007/s12325-020-01474-z. - DOI - PMC - PubMed
  87.  
    1. Karger A.B., Steffen B.T., Nomura S.O., Guan W., Garg P.K., Szklo M., Budoff M.J., Tsai M.Y. Association between Homocysteine and Vascular Calcification Incidence, Prevalence, and Progression in the MESA Cohort. J. Am. Heart Assoc. 2020;9:e013934. doi: 10.1161/JAHA.119.013934. - DOI - PMC - PubMed
  88.  
    1. Wald D.S., Law M., Morris J.K. Homocysteine and cardiovascular disease: Evidence on causality from a meta-analysis. BMJ. 2002;325:1202. doi: 10.1136/bmj.325.7374.1202. - DOI - PMC - PubMed
  89.  
    1. Barroso M., Handy D.E., Castro R. The Link between Hyperhomocysteinemia and Hypomethylation: Implications for Cardiovascular Disease. J. Inborn Errors Metab. Screen. 2017;5:2326409817698994. doi: 10.1177/2326409817698994. - DOI
  90.  
    1. Frei B. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage. Am. J. Clin. Nutr. 1991;54:1113S–1118S. doi: 10.1093/ajcn/54.6.1113s. - DOI - PubMed
  91.  
    1. Kiokias S., Proestos C., Oreopoulou V. Effect of Natural Food Antioxidants against LDL and DNA Oxidative Changes. Antioxidants. 2018;7:133. doi: 10.3390/antiox7100133. - DOI - PMC - PubMed
  92.  
    1. Plantinga Y., Ghiadoni L., Magagna A., Giannarelli C., Franzoni F., Taddei S., Salvetti A. Supplementation with Vitamins C and E Improves Arterial Stiffness and Endothelial Function in Essential Hypertensive Patients. Am. J. Hypertens. 2007;20:392–397. doi: 10.1016/j.amjhyper.2006.09.021. - DOI - PubMed
  93.  
    1. Morelli M.B., Gambardella J., Castellanos V., Trimarco V., Santulli G. Vitamin C and Cardiovascular Disease: An Update. Antioxidants. 2020;9:1227. doi: 10.3390/antiox9121227. - DOI - PMC - PubMed
  94.  
    1. Pfister R., Sharp S.J., Luben R., Wareham N.J., Khaw K.T. Plasma vitamin C predicts incident heart failure in men and women in European Prospective Investigation into Cancer and Nutrition-Norfolk prospective study. Am. Heart J. 2011;162:246–253. doi: 10.1016/j.ahj.2011.05.007. - DOI - PubMed
  95.  
    1. Martín-Calvo N., Martínez-González M.Á. Vitamin C Intake is Inversely Associated with Cardiovascular Mortality in a Cohort of Spanish Graduates: The SUN Project. Nutrients. 2017;9:954. doi: 10.3390/nu9090954. - DOI - PMC - PubMed
  96.  
    1. Surampudi P., Enkhmaa B., Anuurad E., Berglund L. Lipid Lowering with Soluble Dietary Fiber. Curr. Atheroscler. Rep. 2016;18:75. doi: 10.1007/s11883-016-0624-z. - DOI - PubMed
  97.  
    1. Threapleton D.E., Greenwood D.C., Evans C.E., Cleghorn C.L., Nykjaer C., Woodhead C., Cade J.E., Gale C.P., Burley V.J. Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ. 2013;347:f6879. doi: 10.1136/bmj.f6879. - DOI - PMC - PubMed
  98.  
    1. Jwanny E.W., Rashad M.M., Moharib S.A., El Beih N.M. Studies on date waste dietary fibers as hypolipidemic agent in rats. Z. Ernahr. 1996;35:39–44. doi: 10.1007/BF01612026. - DOI - PubMed
  99.  
    1. Slavin J.L., Martini M.C., Jacobs D.R., Marquart L. Plausible mechanisms for the protectiveness of whole grains. Am. J. Clin. Nutr. 1999;70:459S–463S. doi: 10.1093/ajcn/70.3.459s. - DOI - PubMed
  100.  
    1. Lunn J., Buttriss J.L. Carbohydrates and dietary fibre. Nutr. Bull. 2007;32:21–64. doi: 10.1111/j.1467-3010.2007.00616.x. - DOI
  101.  
    1. Tang W.H., Kitai T., Hazen S.L. Gut Microbiota in Cardiovascular Health and Disease. Circ. Res. 2017;120:1183–1196. doi: 10.1161/CIRCRESAHA.117.309715. - DOI - PMC - PubMed
  102.  
    1. Marques F.Z., Nelson E., Chu P.Y., Horlock D., Fiedler A., Ziemann M., Tan J.K., Kuruppu S., Rajapakse N.W., El-Osta A., et al. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation. 2017;135:964–977. doi: 10.1161/CIRCULATIONAHA.116.024545. - DOI - PubMed
  103.  
    1. Furusawa Y., Obata Y., Fukuda S., Endo T.A., Nakato G., Takahashi D., Nakanishi Y., Uetake C., Kato K., Kato T., et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–450. doi: 10.1038/nature12721. - DOI - PubMed
  104.  
    1. den Besten G., Bleeker A., Gerding A., van Eunen K., Havinga R., van Dijk T.H., Oosterveer M.H., Jonker J.W., Groen A.K., Reijngoud D.J., et al. Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPARγ-Dependent Switch From Lipogenesis to Fat Oxidation. Diabetes. 2015;64:2398–2408. doi: 10.2337/db14-1213. - DOI - PubMed
  105.  
    1. Mouton A.J., Li X., Hall M.E., Hall J.E. Obesity, Hypertension, and Cardiac Dysfunction. Circ. Res. 2020;126:789–806. doi: 10.1161/CIRCRESAHA.119.312321. - DOI - PMC - PubMed
  106.  
    1. Manach C., Williamson G., Morand C., Scalbert A., Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005;81:230S–242S. doi: 10.1093/ajcn/81.1.230S. - DOI - PubMed
  107.  
    1. Bode L.M., Bunzel D., Huch M., Cho G.S., Ruhland D., Bunzel M., Bub A., Franz C.M., Kulling S.E. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am. J. Clin. Nutr. 2013;97:295–309. doi: 10.3945/ajcn.112.049379. - DOI - PubMed
  108.  
    1. Pasinetti G.M., Singh R., Westfall S., Herman F., Faith J., Ho L. The Role of the Gut Microbiota in the Metabolism of Polyphenols as Characterized by Gnotobiotic Mice. J. Alzheimer’s Dis. 2018;63:409–421. doi: 10.3233/JAD-171151. - DOI - PMC - PubMed
  109.  
    1. Marín L., Miguélez E.M., Villar C.J., Lombó F. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. Biomed Res. Int. 2015;2015:905215. doi: 10.1155/2015/905215. - DOI - PMC - PubMed
  110.  
    1. Scalbert A., Williamson G. Dietary Intake and Bioavailability of Polyphenols. J. Nutr. 2000;130:2073S–2085S. doi: 10.1093/jn/130.8.2073S. - DOI - PubMed
  111.  
    1. Borkowski K., Yim S.J., Holt R.R., Hackman R.M., Keen C.L., Newman J.W., Shearer G.C. Walnuts change lipoprotein composition suppressing TNFα-stimulated cytokine production by diabetic adipocyte. J. Nutr. Biochem. 2019;68:51–58. doi: 10.1016/j.jnutbio.2019.03.004. - DOI - PMC - PubMed
  112.  
    1. Holt R.R., Yim S.J., Shearer G.C., Hackman R.M., Djurica D., Newman J.W., Shindel A.W., Keen C.L. Effects of short-term walnut consumption on human microvascular function and its relationship to plasma epoxide content. J. Nutr. Biochem. 2015;26:1458–1466. doi: 10.1016/j.jnutbio.2015.07.012. - DOI - PubMed
  113.  
    1. Holt R.R., Zuelch M.L., Charoenwoodhipong P., Al-Dashti Y.A., Hackman R.M., Keen C.L. Effects of short-term consumption of strawberry powder on select parameters of vascular health in adolescent males. Food Funct. 2020;11:32–44. doi: 10.1039/C9FO01844A. - DOI - PubMed
  114.  
    1. Lee Y., Berryman C.E., West S.G., Chen C.O., Blumberg J.B., Lapsley K.G., Preston A.G., Fleming J.A., Kris-Etherton P.M. Effects of Dark Chocolate and Almonds on Cardiovascular Risk Factors in Overweight and Obese Individuals: A Randomized Controlled-Feeding Trial. J. Am. Heart Assoc. 2017;6:e005162. doi: 10.1161/JAHA.116.005162. - DOI - PMC - PubMed
  115.  
    1. Schnabel R.B., Wild P.S., Schulz A., Zeller T., Sinning C.R., Wilde S., Kunde J., Lubos E., Lackner K.J., Warnholtz A., et al. Multiple endothelial biomarkers and noninvasive vascular function in the general population: The Gutenberg Health Study. Hypertension. 2012;60:288–295. doi: 10.1161/HYPERTENSIONAHA.112.191874. - DOI - PubMed
  116.  
    1. Matsuzawa Y., Kwon T.G., Lennon R.J., Lerman L.O., Lerman A. Prognostic Value of Flow-Mediated Vasodilation in Brachial Artery and Fingertip Artery for Cardiovascular Events: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2015;4:e002270. doi: 10.1161/JAHA.115.002270. - DOI - PMC - PubMed
  117.  
    1. Hamburg N.M., Palmisano J., Larson M.G., Sullivan L.M., Lehman B.T., Vasan R.S., Levy D., Mitchell G.F., Vita J.A., Benjamin E.J. Relation of brachial and digital measures of vascular function in the community: The Framingham heart study. Hypertension. 2011;57:390–396. doi: 10.1161/HYPERTENSIONAHA.110.160812. - DOI - PMC - PubMed
  118.  
    1. Freemark M. Endothelial dysfunction and cardiovascular disease in childhood obesity. J. Pediatr. 2018;95:503–505. doi: 10.1016/j.jped.2018.07.004. - DOI - PubMed
  119.  
    1. Correia-Costa A., Correia-Costa L., Caldas Afonso A., Schaefer F., Guerra A., Moura C., Mota C., Barros H., Areias J.C., Azevedo A. Determinants of carotid-femoral pulse wave velocity in prepubertal children. Int. J. Cardiol. 2016;218:37–42. doi: 10.1016/j.ijcard.2016.05.060. - DOI - PubMed
  120.  
    1. Djurica D., Holt R.R., Ren J., Shindel A.W., Hackman R.M., Keen C.L. Effects of a dietary strawberry powder on parameters of vascular health in adolescent males. Br. J. Nutr. 2016;116:639–647. doi: 10.1017/S0007114516002348. - DOI - PubMed
  121.  
    1. Grassi D., Draijer R., Schalkwijk C., Desideri G., D’Angeli A., Francavilla S., Mulder T., Ferri C. Black Tea Increases Circulating Endothelial Progenitor Cells and Improves Flow Mediated Dilatation Counteracting Deleterious Effects from a Fat Load in Hypertensive Patients: A Randomized Controlled Study. Nutrients. 2016;8:727. doi: 10.3390/nu8110727. - DOI - PMC - PubMed
  122.  
    1. Curtis P.J., van der Velpen V., Berends L., Jennings A., Feelisch M., Umpleby A.M., Evans M., Fernandez B.O., Meiss M.S., Minnion M., et al. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome-results from a 6-month, double-blind, randomized controlled trial. Am. J. Clin. Nutr. 2019;109:1535–1545. doi: 10.1093/ajcn/nqy380. - DOI - PMC - PubMed
  123.  
    1. Sansone R., Rodriguez-Mateos A., Heuel J., Falk D., Schuler D., Wagstaff R., Kuhnle G.G., Spencer J.P., Schroeter H., Merx M.W., et al. Cocoa flavanol intake improves endothelial function and Framingham Risk Score in healthy men and women: A randomised, controlled, double-masked trial: The Flaviola Health Study. Br. J. Nutr. 2015;114:1246–1255. doi: 10.1017/S0007114515002822. - DOI - PMC - PubMed
  124.  
    1. Milenkovic D., Morand C., Cassidy A., Konic-Ristic A., Tomás-Barberán F., Ordovas J.M., Kroon P., De Caterina R., Rodriguez-Mateos A. Interindividual Variability in Biomarkers of Cardiometabolic Health after Consumption of Major Plant-Food Bioactive Compounds and the Determinants Involved. Adv. Nutr. 2017;8:558–570. doi: 10.3945/an.116.013623. - DOI - PMC - PubMed
  125.  
    1. Sorkin B.C., Kuszak A.J., Williamson J.S., Hopp D.C., Betz J.M. The Challenge of Reproducibility and Accuracy in Nutrition Research: Resources and Pitfalls. Adv. Nutr. 2016;7:383–389. doi: 10.3945/an.115.010595. - DOI - PMC - PubMed
  126.  
    1. Salama K.F., Randhawa M.A., Al Mulla A.A., Labib O.A. Heavy metals in some date palm fruit cultivars in Saudi Arabia and their health risk assessment. Int. J. Food Prop. 2019;22:1684–1692. doi: 10.1080/10942912.2019.1671453. - DOI
  127.  
    1. Khandaker M.U., Shuaibu H.K., Alklabi F.A.A., Alzimami K.S., Bradley D.A. Study of Primordial 226Ra, 228Ra, and 40K Concentrations in Dietary Palm Dates and Concomitant Radiological Risk. Health Phys. 2019;116:789–798. doi: 10.1097/HP.0000000000001042. - DOI - PubMed
  128.  
    1. Kachenko A.G., Singh B. Heavy Metals Contamination in Vegetables Grown in Urban and Metal Smelter Contaminated Sites in Australia. Water Air Soil Pollut. 2006;169:101–123. doi: 10.1007/s11270-006-2027-1. - DOI
  129.  
    1. Tchounwou P.B., Yedjou C.G., Patlolla A.K., Sutton D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012;101:133–164. doi: 10.1007/978-3-7643-8340-4_6. - DOI - PMC - PubMed