Highly Segregated Biocomposite Membrane as a Functionally Graded Template for Periodontal Tissue Regeneration

Affiliations


Abstract

Guided tissue regeneration (GTR) membranes are used for treating chronic periodontal lesions with the aim of regenerating lost periodontal attachment. Spatially designed functionally graded bioactive membranes with surface core layers have been proposed as the next generation of GTR membranes. Composite formulations of biopolymer and bioceramic have the potential to meet these criteria. Chitosan has emerged as a well-known biopolymer for use in tissue engineering applications due to its properties of degradation, cytotoxicity and antimicrobial nature. Hydroxyapatite is an essential component of the mineral phase of bone. This study developed a GTR membrane with an ideal chitosan to hydroxyapatite ratio with adequate molecular weight. Membranes were fabricated using solvent casting with low and medium molecular weights of chitosan. They were rigorously characterised with scanning electron microscopy, Fourier transform infrared spectroscopy in conjunction with photoacoustic sampling accessory (FTIR-PAS), swelling ratio, degradation profile, mechanical tensile testing and cytotoxicity using human osteosarcoma and mesenchymal progenitor cells. Scanning electron microscopy showed two different features with 70% HA at the bottom surface packed tightly together, with high distinction of CH from HA. FTIR showed distinct chitosan dominance on top and hydroxyapatite on the bottom surface. Membranes with medium molecular weight showed higher swelling and longer degradation profile as compared to low molecular weight. Cytotoxicity results indicated that the low molecular weight membrane with 30% chitosan and 70% hydroxyapatite showed higher viability with time. Results suggest that this highly segregated bilayer membrane shows promising potential to be adapted as a surface layer whilst constructing a functionally graded GTR membrane on its own and for other biomedical applications.

Keywords: chitosan; guided tissue regeneration; hydroxyapatite; periodontal engineering.

Conflict of interest statement

The authors declare no conflict of interest.


Figures


Similar articles

Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration.

Qasim SB, Najeeb S, Delaine-Smith RM, Rawlinson A, Ur Rehman I.Dent Mater. 2017 Jan;33(1):71-83. doi: 10.1016/j.dental.2016.10.003. Epub 2016 Nov 11.PMID: 27842886

Freeze gelated porous membranes for periodontal tissue regeneration.

Qasim SB, Delaine-Smith RM, Fey T, Rawlinson A, Rehman IU.Acta Biomater. 2015 Sep;23:317-328. doi: 10.1016/j.actbio.2015.05.001. Epub 2015 May 9.PMID: 25968357

Bioactivity and biocompatibility of a chitosan-tobermorite composite membrane for guided tissue regeneration.

Hurt AP, Getti G, Coleman NJ.Int J Biol Macromol. 2014 Mar;64:11-6. doi: 10.1016/j.ijbiomac.2013.11.020. Epub 2013 Dec 1.PMID: 24296410

Recent advances in the development of GTR/GBR membranes for periodontal regeneration--a materials perspective.

Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TM, Kowolik MJ, Janowski GM.Dent Mater. 2012 Jul;28(7):703-21. doi: 10.1016/j.dental.2012.04.022. Epub 2012 May 14.PMID: 22592164 Review.

Chitosan as a barrier membrane material in periodontal tissue regeneration.

Xu C, Lei C, Meng L, Wang C, Song Y.J Biomed Mater Res B Appl Biomater. 2012 Jul;100(5):1435-43. doi: 10.1002/jbm.b.32662. Epub 2012 Jan 28.PMID: 22287502 Review.


Cited by

Functionally Graded Bioactive Composites Based on Poly(vinyl alcohol) Made through Thiol-Ene Click Reaction.

Adarsh RK, Das EC, Gopan GV, Selvam S, Komath M.ACS Omega. 2022 Aug 15;7(33):29246-29255. doi: 10.1021/acsomega.2c03382. eCollection 2022 Aug 23.PMID: 36033676 Free PMC article.

Barrier Membrane in Regenerative Therapy: A Narrative Review.

Alauddin MS, Abdul Hayei NA, Sabarudin MA, Mat Baharin NH.Membranes (Basel). 2022 Apr 20;12(5):444. doi: 10.3390/membranes12050444.PMID: 35629770 Free PMC article. Review.


KMEL References


References

  1.  
    1. Foey A.D., Habil N., Al-Shaghdali K., Crean S.J. Porphyromonas gingivalis-stimulated macrophage subsets exhibit differential induction and responsiveness to interleukin-10. Arch. Oral Biol. 2017;73:282–288. doi: 10.1016/j.archoralbio.2016.10.029. - DOI - PubMed
  2.  
    1. Sculean A., Nikolidakis D., Nikou G., Ivanovic A., Chapple I.L.C., Stavropoulos A. Biomaterials for promoting periodontal regeneration in human intrabony defects: A systematic review. Periodontol. 2000. 2015;68:182–216. doi: 10.1111/prd.12086. - DOI - PubMed
  3.  
    1. Susin C., Wikesjö U.M.E. Regenerative periodontal therapy: 30 years of lessons learned and unlearned. Periodontol. 2000. 2013;62:232–242. doi: 10.1111/prd.12003. - DOI - PubMed
  4.  
    1. Chen F.-M.M., Jin Y. Periodontal tissue engineering and regeneration: Current approaches and expanding opportunities. Tissue Eng. Part B-Rev. 2010;16:219–255. doi: 10.1089/ten.teb.2009.0562. - DOI - PubMed
  5.  
    1. Menicanin D., Hynes K., Han J., Gronthos S., Bartold P.M. Cementum and periodontal ligament regeneration. Adv. Exp. Med. Biol. 2015;881:207–236. doi: 10.1007/978-3-319-22345-2_12. - DOI - PubMed
  6.  
    1. Bottino M.C., Thomas V., Schmidt G., Vohra Y.K., Chu T.-M.G., Kowolik M.J., Janowski G.M. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective. Dent. Mater. 2012;28:703–721. doi: 10.1016/j.dental.2012.04.022. - DOI - PubMed
  7.  
    1. Bosshardt D.D., Sculean A. Does periodontal tissue regeneration really work? Periodontol. 2000. 2009;51:208–219. doi: 10.1111/j.1600-0757.2009.00317.x. - DOI - PubMed
  8.  
    1. Leal A.I., Caridade S.G., Ma J., Yu N., Gomes M.E., Reis R.L., Jansen J.A., Walboomers X.F., Mano J.F. Asymmetric PDLLA membranes containing Bioglass® for guided tissue regeneration: Characterization and in vitro biological behavior. Dent. Mater. 2013;29:427–436. doi: 10.1016/j.dental.2013.01.009. - DOI - PubMed
  9.  
    1. Dentino A., Lee S., Mailhot J., Hefti A.F. Principles of periodontology. Periodontol. 2000. 2013;61:16–53. doi: 10.1111/j.1600-0757.2011.00397.x. - DOI - PubMed
  10.  
    1. Bottino M.C., Thomas V., Janowski G.M. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomater. 2011;7:216–224. doi: 10.1016/j.actbio.2010.08.019. - DOI - PubMed
  11.  
    1. Husain S., Al-Samadani K.H., Najeeb S., Zafar M.S., Khurshid Z., Zohaib S., Qasim S.B. Chitosan biomaterials for current and potential dental applications. Materials. 2017;10:602. doi: 10.3390/ma10060602. - DOI - PMC - PubMed
  12.  
    1. Qasim S.B., Zafar M.S., Najeeb S., Khurshid Z., Shah A.H., Husain S., Rehman I.U. Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int. J. Mol. Sci. 2018;19:407. doi: 10.3390/ijms19020407. - DOI - PMC - PubMed
  13.  
    1. Rinaudo M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006;31:603–632. doi: 10.1016/j.progpolymsci.2006.06.001. - DOI
  14.  
    1. Di Martino A., Sittinger M., Risbud M.V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983–5990. doi: 10.1016/j.biomaterials.2005.03.016. - DOI - PubMed
  15.  
    1. Lord M.S., Cheng B., McCarthy S.J., Jung M.S., Whitelock J.M. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins. Biomaterials. 2011;32:6655–6662. doi: 10.1016/j.biomaterials.2011.05.062. - DOI - PubMed
  16.  
    1. Muzzarelli R.A.A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym. 2009;76:167–182. doi: 10.1016/j.carbpol.2008.11.002. - DOI
  17.  
    1. Van Hong Thien D., Hsiao S.W., Ho M.H., Li C.H., Shih J.L. Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. J. Mater. Sci. 2013;48:1640–1645. doi: 10.1007/s10853-012-6921-1. - DOI
  18.  
    1. Madhumathi K., Shalumon K.T., Rani V.V., Tamura H., Furuike T., Selvamurugan N., Nair S.V., Jayakumar R. Wet chemical synthesis of chitosan hydrogel-hydroxyapatite composite membranes for tissue engineering applications. Int. J. Biol. Macromol. 2009;45:12–15. doi: 10.1016/j.ijbiomac.2009.03.011. - DOI - PubMed
  19.  
    1. Fraga A.F., de Filho E.A., da Rigo E.C.S., Boschi A.O. Synthesis of chitosan/hydroxyapatite membranes coated with hydroxycarbonate apatite for guided tissue regeneration purposes. Appl. Surf. Sci. 2011;257:3888–3892. doi: 10.1016/j.apsusc.2010.11.104. - DOI
  20.  
    1. Qasim S.B., Delaine-Smith R.M., Rawlinson A., Ur Rehman I. Freeze gelated porous membranes for periodontal tissue regeneration. Acta Biomater. 2015;23:317–328. doi: 10.1016/j.actbio.2015.05.001. - DOI - PubMed
  21.  
    1. Frohbergh M.E., Katsman A., Botta G.P., Lazarovici P., Schauer C.L., Wegst U.G.K., Lelkes P.I. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials. 2012;33:9167–9178. doi: 10.1016/j.biomaterials.2012.09.009. - DOI - PMC - PubMed
  22.  
    1. Xianmiao C., Yubao L., Yi Z., Li Z., Jidong L., Huanan W. Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater. Sci. Eng. C. 2009;29:29–35. doi: 10.1016/j.msec.2008.05.008. - DOI
  23.  
    1. Qasim S.B., Najeeb S., Delaine-Smith R.M., Rawlinson A., Ur Rehman I. Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration. Dent. Mater. 2017;33:71–83. doi: 10.1016/j.dental.2016.10.003. - DOI - PubMed
  24.  
    1. Qasim S.B., Husain S., Huang Y., Pogorielov M., Deineka V., Lyndin M., Rawlinson A., Rehman I.U. In-vitro and in-vivo degradation studies of freeze gelated porous chitosan composite scaffolds for tissue engineering applications. Polym. Degrad. Stab. 2017;136:31–38. doi: 10.1016/j.polymdegradstab.2016.11.018. - DOI
  25.  
    1. Qasim S.B., Delaine-Smith R., Rawlinson A., Rehman I.U. Development of a Novel Bioactive Functionally Guided Tissue Graded Membrane for Periodontal Lesions; Proceedings of the USES Conference Proceedings; Sheffield, UK. 13–16 July 2015; pp. 25–26.
  26.  
    1. Shahzadi L., Zeeshan R., Yar M., Bin Qasim S., Chaudhry A.A., Khan A.F., Muhammad N. Biocompatibility Through Cell Attachment and Cell Proliferation Studies of Nylon 6/Chitosan/Ha Electrospun Mats. J. Polym. Environ. 2018;26:2030–2038. doi: 10.1007/s10924-017-1100-8. - DOI
  27.  
    1. Li X.Y., Nan K.H., Shi S., Chen H. Preparation and characterization of nano-hydroxyapatite/chitosan cross-linking composite membrane intended for tissue engineering. Int. J. Biol. Macromol. 2012;50:43–49. doi: 10.1016/j.ijbiomac.2011.09.021. - DOI - PubMed
  28.  
    1. Thein-Han W.W., Misra R.D.K. Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 2009;5:1182–1197. doi: 10.1016/j.actbio.2008.11.025. - DOI - PubMed
  29.  
    1. Maganti N., Venkat Surya P.K.C., Thein-Han W.W., Pesacreta T.C., Misra R.D.K. Structure-process-property relationship of biomimetic chitosan-based nanocomposite scaffolds for tissue engineering: Biological, physico-chemical, and mechanical functions. Adv. Eng. Mater. 2011;13:B108–B122. doi: 10.1002/adem.201080094. - DOI
  30.  
    1. Teng S.-H.H., Lee E.-J.J., Yoon B.-H.H., Shin D.-S.S., Kim H.-E.E., Oh J.-S.S. Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J. Biomed. Mater. Res. Part A. 2009;88:569–580. doi: 10.1002/jbm.a.31897. - DOI - PubMed
  31.  
    1. Brugnerotto J., Lizardi J., Goycoolea F.M., Argüelles-Monal W., Desbrières J., Rinaudo M. An infrared investigation in relation with chitin and chitosan characterization. Polymer. 2001;42:3569–3580. doi: 10.1016/S0032-3861(00)00713-8. - DOI
  32.  
    1. Kim H.W., Song J.H., Kim H.E. Nanofiber Generation of Gelatin–Hydroxyapatite Biomimetics for Guided Tissue Regeneration. Adv. Funct. Mater. 2005;15:1988–1994. doi: 10.1002/adfm.200500116. - DOI
  33.  
    1. Pandey A., Jan E., Aswath P.B. Physical and mechanical behavior of hot rolled HDPE/HA composites. J. Mater. Sci. 2006;41:3369–3376. doi: 10.1007/s10853-005-5350-9. - DOI
  34.  
    1. Abere D.V., Oyatogun G.M., Akinwole I.E., Abioye A.A., Rominiyi A.L., T. I.M. Effects of Increasing Chitosan Nanofibre Volume Fraction on the Mechanical Property of Hydroxyapatite. Am. J. Mater. Sci. Eng. 2017;5:6–16. doi: 10.12691/AJMSE-5-1-2. - DOI
  35.  
    1. Breuls R.G., Jiya T.U., Smit T.H. Scaffold Stiffness Influences Cell Behavior: Opportunities for Skeletal Tissue Engineering. Open Orthop. J. 2008;2:103. doi: 10.2174/1874325000802010103. - DOI - PMC - PubMed
  36.  
    1. Prasadh S., Wong R.C.W. Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Sci. Int. 2018;15:48–55. doi: 10.1016/S1348-8643(18)30005-3. - DOI
  37.  
    1. Caballé-Serrano J., Munar-Frau A., Delgado L., Pérez R., Hernández-Alfaro F. Physicochemical characterization of barrier membranes for bone regeneration. J. Mech. Behav. Biomed. Mater. 2019;97:13–20. doi: 10.1016/j.jmbbm.2019.04.053. - DOI - PubMed
  38.  
    1. Raz P., Brosh T., Ronen G., Tal H. Tensile Properties of Three Selected Collagen Membranes. BioMed Res. Int. 2019;2019 doi: 10.1155/2019/5163603. - DOI - PMC - PubMed
  39.  
    1. Hunter K.T., Ma T. In vitro evaluation of hydroxyapatite-chitosan-gelatin composite membrane in guided tissue regeneration. J. Biomed. Mater. Res. Part A. 2013;101A:1016–1025. doi: 10.1002/jbm.a.34396. - DOI - PubMed
  40.  
    1. Mohamed K.R., Beherei H.H., El-Rashidy Z.M. In vitro study of nano-hydroxyapatite/chitosan–gelatin composites for bio-applications. J. Adv. Res. 2014;5:201–208. doi: 10.1016/j.jare.2013.02.004. - DOI - PMC - PubMed
  41.  
    1. Wang X., Wang X., Tan Y., Zhang B., Gu Z., Li X. Synthesis and evaluation of collagen-chitosan- hydroxyapatite nanocomposites for bone grafting. J. Biomed. Mater. Res. Part A. 2009;89:1079–1087. doi: 10.1002/jbm.a.32087. - DOI - PubMed
  42.  
    1. Mota J., Yu N., Caridade S.G., Luz G.M., Gomes M.E., Reis R.L., Jansen J.A., Frank Walboomers X., Mano J.F., Walboomers X.F., et al. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomater. 2012;8:4173–4180. doi: 10.1016/j.actbio.2012.06.040. - DOI - PubMed
  43.  
    1. Ren D., Yi H., Wang W., Ma X. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr. Res. 2005;340:2403–2410. doi: 10.1016/j.carres.2005.07.022. - DOI - PubMed
  44.  
    1. von Burkersroda F., Schedl L., Gopferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials. 2002;23:4221–4231. doi: 10.1016/S0142-9612(02)00170-9. - DOI - PubMed
  45.  
    1. Tu Y., Chen C., Li Y., Hou Y., Huang M., Zhang L. Fabrication of nano-hydroxyapatite/chitosan membrane with asymmetric structure and its applications in guided bone regeneration. Biomed. Mater. Eng. 2017;28:223. doi: 10.3233/BME-171669. - DOI - PubMed
  46.  
    1. Aktug S.L., Durdu S., Kalkan S., Cavusoglu K., Usta M. In vitro biological and antimicrobial properties of chitosan-based bioceramic coatings on zirconium. Sci. Rep. 2021;11:1–13. doi: 10.1038/s41598-021-94502-z. - DOI - PMC - PubMed
  47.  
    1. Paital S.R., Dahotre N.B. Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca–P bioceramic coating. Acta Biomater. 2009;5:2763–2772. doi: 10.1016/j.actbio.2009.03.004. - DOI - PubMed
  48.  
    1. Jung U.-W., Hwang J.-W., Choi D.-Y., Hu K.-S., Kwon M.-K., Choi S.-H., Kim H.-J. Surface characteristics of a novel hydroxyapatite-coated dental implant. J. Periodontal Implant Sci. 2012;42:63. doi: 10.5051/jpis.2012.42.2.59. - DOI - PMC - PubMed
  49.  
    1. Xu F., Wei M., Zhang X., Song Y., Zhou W., Wang Y. How Pore Hydrophilicity Influences Water Permeability? Research. 2019;2019:1–10. doi: 10.34133/2019/2581241. - DOI - PMC - PubMed
  50.  
    1. Wan Y., Yu A., Wu H., Wang Z., Wen D. Porous-conductive chitosan scaffolds for tissue engineering II. In vitro and in vivo degradation. J. Mater. Sci. Mater. Med. 2005;16:1017–1028. doi: 10.1007/s10856-005-4756-x. - DOI - PubMed
  51.  
    1. Liuyun J., Yubao L., Chengdong X. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J. Biomed. Sci. 2009;16:65–75. doi: 10.1186/1423-0127-16-65. - DOI - PMC - PubMed
  52.  
    1. Tomihata K., Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;18:567–575. doi: 10.1016/S0142-9612(96)00167-6. - DOI - PubMed
  53.  
    1. Freier T., Koh H.S., Kazazian K., Shoichet M.S. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials. 2005;26:5872–5878. doi: 10.1016/j.biomaterials.2005.02.033. - DOI - PubMed
  54.  
    1. Hankiewicz J., Swierczek E. Lysozyme in human body fluids. Clin. Chim. Acta. 1974;57:205–209. doi: 10.1016/0009-8981(74)90398-2. - DOI - PubMed
  55.  
    1. Hamilton V., Yuan Y.L., Rigney D.A., Chesnutt B.M., Puckett A.D., Ong J.L., Yang Y.Z., Haggard W.O., Elder S.H., Bumgardner J.D. Bone cell attachment and growth on well-characterized chitosan films. Polym. Int. 2007;56:641–647. doi: 10.1002/pi.2181. - DOI
  56.  
    1. Sailaja G.S., Ramesh P., Kumary T.V., Varma H.K. Human osteosarcoma cell adhesion behaviour on hydroxyapatite integrated chitosan-poly(acrylic acid) polyelectrolyte complex. Acta Biomater. 2006;2:651–657. doi: 10.1016/j.actbio.2006.05.011. - DOI - PubMed
  57.  
    1. Kong L., Gao Y., Cao W., Gong Y., Zhao N., Zhang X. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J. Biomed. Mater. Res. Part A. 2005;75A:275–282. doi: 10.1002/jbm.a.30414. - DOI - PubMed
  58.  
    1. Przekora A. The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications. Mater. Sci. Eng. C. 2019;97:1036–1051. doi: 10.1016/j.msec.2019.01.061. - DOI - PubMed
  59.  
    1. Correlo V.M., Oliveira J.M., Mano J.F., Neves N.M., Reis R.L. Principles of Regenerative Medicine. Academic Press; Cambridge, MA, USA: 2011. Natural Origin Materials for Bone Tissue Engineering-Properties, Processing, and Performance; pp. 557–586.
  60.  
    1. Zomorodian E., Baghaban Eslaminejad M. Mesenchymal stem cells as a potent cell source for bone regeneration. Stem Cells Int. 2012;2012 doi: 10.1155/2012/980353. - DOI - PMC - PubMed
  61.  
    1. Jiang T., Zhang Z., Zhou Y., Liu Y., Wang Z., Tong H., Shen X., Wang Y. Surface functionalization of titanium with chitosan/gelatin via electrophoretic deposition: Characterization and cell behavior. Biomacromolecules. 2010;11:1254–1260. doi: 10.1021/bm100050d. - DOI - PubMed
  62.  
    1. Uygun B.E., Bou-Akl T., Albanna M., Matthew H.W.T.T. Membrane thickness is an important variable in membrane scaffolds: Influence of chitosan membrane structure on the behavior of cells. Acta Biomater. 2010;6:2126–2131. doi: 10.1016/j.actbio.2009.11.018. - DOI - PMC - PubMed
  63.  
    1. Park H., Choi B., Nguyen J., Fan J.B., Shafi S., Klokkevold P., Lee M. Anionic carbohydrate-containing chitosan scaffolds for bone regeneration. Carbohydr. Polym. 2013;97:587–596. doi: 10.1016/j.carbpol.2013.05.023. - DOI - PMC - PubMed
  64.  
    1. Wang G.C., Zheng L., Zhao H.S., Miao J.Y., Sun C.H., Ren N., Wang J.Y., Liu H., Tao X.T. In Vitro Assessment of the Differentiation Potential of Bone Marrow-Derived Mesenchymal Stem Cells on Genipin-Chitosan Conjugation Scaffold with Surface Hydroxyapatite Nanostructure for Bone Tissue Engineering. Tissue Eng. Part A. 2011;17:1341–1349. doi: 10.1089/ten.tea.2010.0497. - DOI - PubMed