Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
Department of Restorative Sciences, Faculty of Dentistry, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
Dental Materials Science, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hospital Road 34, Sai Ying Pun, Hong Kong, China.
Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, UK.
Clinical Dentistry, Restorative Division, Faculty of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia.
Department of Surgical Sciences, Faculty of Dentistry, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
Guided tissue regeneration (GTR) membranes are used for treating chronic periodontal lesions with the aim of regenerating lost periodontal attachment. Spatially designed functionally graded bioactive membranes with surface core layers have been proposed as the next generation of GTR membranes. Composite formulations of biopolymer and bioceramic have the potential to meet these criteria. Chitosan has emerged as a well-known biopolymer for use in tissue engineering applications due to its properties of degradation, cytotoxicity and antimicrobial nature. Hydroxyapatite is an essential component of the mineral phase of bone. This study developed a GTR membrane with an ideal chitosan to hydroxyapatite ratio with adequate molecular weight. Membranes were fabricated using solvent casting with low and medium molecular weights of chitosan. They were rigorously characterised with scanning electron microscopy, Fourier transform infrared spectroscopy in conjunction with photoacoustic sampling accessory (FTIR-PAS), swelling ratio, degradation profile, mechanical tensile testing and cytotoxicity using human osteosarcoma and mesenchymal progenitor cells. Scanning electron microscopy showed two different features with 70% HA at the bottom surface packed tightly together, with high distinction of CH from HA. FTIR showed distinct chitosan dominance on top and hydroxyapatite on the bottom surface. Membranes with medium molecular weight showed higher swelling and longer degradation profile as compared to low molecular weight. Cytotoxicity results indicated that the low molecular weight membrane with 30% chitosan and 70% hydroxyapatite showed higher viability with time. Results suggest that this highly segregated bilayer membrane shows promising potential to be adapted as a surface layer whilst constructing a functionally graded GTR membrane on its own and for other biomedical applications.
Xu C, Lei C, Meng L, Wang C, Song Y.J Biomed Mater Res B Appl Biomater. 2012 Jul;100(5):1435-43. doi: 10.1002/jbm.b.32662. Epub 2012 Jan 28.PMID: 22287502 Review.
Foey A.D., Habil N., Al-Shaghdali K., Crean S.J. Porphyromonas gingivalis-stimulated macrophage subsets exhibit differential induction and responsiveness to interleukin-10. Arch. Oral Biol. 2017;73:282–288. doi: 10.1016/j.archoralbio.2016.10.029. - DOI - PubMed
Sculean A., Nikolidakis D., Nikou G., Ivanovic A., Chapple I.L.C., Stavropoulos A. Biomaterials for promoting periodontal regeneration in human intrabony defects: A systematic review. Periodontol. 2000. 2015;68:182–216. doi: 10.1111/prd.12086. - DOI - PubMed
Susin C., Wikesjö U.M.E. Regenerative periodontal therapy: 30 years of lessons learned and unlearned. Periodontol. 2000. 2013;62:232–242. doi: 10.1111/prd.12003. - DOI - PubMed
Chen F.-M.M., Jin Y. Periodontal tissue engineering and regeneration: Current approaches and expanding opportunities. Tissue Eng. Part B-Rev. 2010;16:219–255. doi: 10.1089/ten.teb.2009.0562. - DOI - PubMed
Menicanin D., Hynes K., Han J., Gronthos S., Bartold P.M. Cementum and periodontal ligament regeneration. Adv. Exp. Med. Biol. 2015;881:207–236. doi: 10.1007/978-3-319-22345-2_12. - DOI - PubMed
Bottino M.C., Thomas V., Schmidt G., Vohra Y.K., Chu T.-M.G., Kowolik M.J., Janowski G.M. Recent advances in the development of GTR/GBR membranes for periodontal regeneration—A materials perspective. Dent. Mater. 2012;28:703–721. doi: 10.1016/j.dental.2012.04.022. - DOI - PubMed
Bosshardt D.D., Sculean A. Does periodontal tissue regeneration really work? Periodontol. 2000. 2009;51:208–219. doi: 10.1111/j.1600-0757.2009.00317.x. - DOI - PubMed
Leal A.I., Caridade S.G., Ma J., Yu N., Gomes M.E., Reis R.L., Jansen J.A., Walboomers X.F., Mano J.F. Asymmetric PDLLA membranes containing Bioglass® for guided tissue regeneration: Characterization and in vitro biological behavior. Dent. Mater. 2013;29:427–436. doi: 10.1016/j.dental.2013.01.009. - DOI - PubMed
Dentino A., Lee S., Mailhot J., Hefti A.F. Principles of periodontology. Periodontol. 2000. 2013;61:16–53. doi: 10.1111/j.1600-0757.2011.00397.x. - DOI - PubMed
Bottino M.C., Thomas V., Janowski G.M. A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration. Acta Biomater. 2011;7:216–224. doi: 10.1016/j.actbio.2010.08.019. - DOI - PubMed
Husain S., Al-Samadani K.H., Najeeb S., Zafar M.S., Khurshid Z., Zohaib S., Qasim S.B. Chitosan biomaterials for current and potential dental applications. Materials. 2017;10:602. doi: 10.3390/ma10060602. - DOI - PMC - PubMed
Qasim S.B., Zafar M.S., Najeeb S., Khurshid Z., Shah A.H., Husain S., Rehman I.U. Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int. J. Mol. Sci. 2018;19:407. doi: 10.3390/ijms19020407. - DOI - PMC - PubMed
Rinaudo M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006;31:603–632. doi: 10.1016/j.progpolymsci.2006.06.001. - DOI
Di Martino A., Sittinger M., Risbud M.V. Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983–5990. doi: 10.1016/j.biomaterials.2005.03.016. - DOI - PubMed
Lord M.S., Cheng B., McCarthy S.J., Jung M.S., Whitelock J.M. The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins. Biomaterials. 2011;32:6655–6662. doi: 10.1016/j.biomaterials.2011.05.062. - DOI - PubMed
Muzzarelli R.A.A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym. 2009;76:167–182. doi: 10.1016/j.carbpol.2008.11.002. - DOI
Van Hong Thien D., Hsiao S.W., Ho M.H., Li C.H., Shih J.L. Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering. J. Mater. Sci. 2013;48:1640–1645. doi: 10.1007/s10853-012-6921-1. - DOI
Madhumathi K., Shalumon K.T., Rani V.V., Tamura H., Furuike T., Selvamurugan N., Nair S.V., Jayakumar R. Wet chemical synthesis of chitosan hydrogel-hydroxyapatite composite membranes for tissue engineering applications. Int. J. Biol. Macromol. 2009;45:12–15. doi: 10.1016/j.ijbiomac.2009.03.011. - DOI - PubMed
Fraga A.F., de Filho E.A., da Rigo E.C.S., Boschi A.O. Synthesis of chitosan/hydroxyapatite membranes coated with hydroxycarbonate apatite for guided tissue regeneration purposes. Appl. Surf. Sci. 2011;257:3888–3892. doi: 10.1016/j.apsusc.2010.11.104. - DOI
Qasim S.B., Delaine-Smith R.M., Rawlinson A., Ur Rehman I. Freeze gelated porous membranes for periodontal tissue regeneration. Acta Biomater. 2015;23:317–328. doi: 10.1016/j.actbio.2015.05.001. - DOI - PubMed
Frohbergh M.E., Katsman A., Botta G.P., Lazarovici P., Schauer C.L., Wegst U.G.K., Lelkes P.I. Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials. 2012;33:9167–9178. doi: 10.1016/j.biomaterials.2012.09.009. - DOI - PMC - PubMed
Xianmiao C., Yubao L., Yi Z., Li Z., Jidong L., Huanan W. Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater. Sci. Eng. C. 2009;29:29–35. doi: 10.1016/j.msec.2008.05.008. - DOI
Qasim S.B., Najeeb S., Delaine-Smith R.M., Rawlinson A., Ur Rehman I. Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration. Dent. Mater. 2017;33:71–83. doi: 10.1016/j.dental.2016.10.003. - DOI - PubMed
Qasim S.B., Husain S., Huang Y., Pogorielov M., Deineka V., Lyndin M., Rawlinson A., Rehman I.U. In-vitro and in-vivo degradation studies of freeze gelated porous chitosan composite scaffolds for tissue engineering applications. Polym. Degrad. Stab. 2017;136:31–38. doi: 10.1016/j.polymdegradstab.2016.11.018. - DOI
Qasim S.B., Delaine-Smith R., Rawlinson A., Rehman I.U. Development of a Novel Bioactive Functionally Guided Tissue Graded Membrane for Periodontal Lesions; Proceedings of the USES Conference Proceedings; Sheffield, UK. 13–16 July 2015; pp. 25–26.
Shahzadi L., Zeeshan R., Yar M., Bin Qasim S., Chaudhry A.A., Khan A.F., Muhammad N. Biocompatibility Through Cell Attachment and Cell Proliferation Studies of Nylon 6/Chitosan/Ha Electrospun Mats. J. Polym. Environ. 2018;26:2030–2038. doi: 10.1007/s10924-017-1100-8. - DOI
Li X.Y., Nan K.H., Shi S., Chen H. Preparation and characterization of nano-hydroxyapatite/chitosan cross-linking composite membrane intended for tissue engineering. Int. J. Biol. Macromol. 2012;50:43–49. doi: 10.1016/j.ijbiomac.2011.09.021. - DOI - PubMed
Thein-Han W.W., Misra R.D.K. Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater. 2009;5:1182–1197. doi: 10.1016/j.actbio.2008.11.025. - DOI - PubMed
Maganti N., Venkat Surya P.K.C., Thein-Han W.W., Pesacreta T.C., Misra R.D.K. Structure-process-property relationship of biomimetic chitosan-based nanocomposite scaffolds for tissue engineering: Biological, physico-chemical, and mechanical functions. Adv. Eng. Mater. 2011;13:B108–B122. doi: 10.1002/adem.201080094. - DOI
Teng S.-H.H., Lee E.-J.J., Yoon B.-H.H., Shin D.-S.S., Kim H.-E.E., Oh J.-S.S. Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. J. Biomed. Mater. Res. Part A. 2009;88:569–580. doi: 10.1002/jbm.a.31897. - DOI - PubMed
Brugnerotto J., Lizardi J., Goycoolea F.M., Argüelles-Monal W., Desbrières J., Rinaudo M. An infrared investigation in relation with chitin and chitosan characterization. Polymer. 2001;42:3569–3580. doi: 10.1016/S0032-3861(00)00713-8. - DOI
Kim H.W., Song J.H., Kim H.E. Nanofiber Generation of Gelatin–Hydroxyapatite Biomimetics for Guided Tissue Regeneration. Adv. Funct. Mater. 2005;15:1988–1994. doi: 10.1002/adfm.200500116. - DOI
Pandey A., Jan E., Aswath P.B. Physical and mechanical behavior of hot rolled HDPE/HA composites. J. Mater. Sci. 2006;41:3369–3376. doi: 10.1007/s10853-005-5350-9. - DOI
Abere D.V., Oyatogun G.M., Akinwole I.E., Abioye A.A., Rominiyi A.L., T. I.M. Effects of Increasing Chitosan Nanofibre Volume Fraction on the Mechanical Property of Hydroxyapatite. Am. J. Mater. Sci. Eng. 2017;5:6–16. doi: 10.12691/AJMSE-5-1-2. - DOI
Breuls R.G., Jiya T.U., Smit T.H. Scaffold Stiffness Influences Cell Behavior: Opportunities for Skeletal Tissue Engineering. Open Orthop. J. 2008;2:103. doi: 10.2174/1874325000802010103. - DOI - PMC - PubMed
Prasadh S., Wong R.C.W. Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Oral Sci. Int. 2018;15:48–55. doi: 10.1016/S1348-8643(18)30005-3. - DOI
Caballé-Serrano J., Munar-Frau A., Delgado L., Pérez R., Hernández-Alfaro F. Physicochemical characterization of barrier membranes for bone regeneration. J. Mech. Behav. Biomed. Mater. 2019;97:13–20. doi: 10.1016/j.jmbbm.2019.04.053. - DOI - PubMed
Raz P., Brosh T., Ronen G., Tal H. Tensile Properties of Three Selected Collagen Membranes. BioMed Res. Int. 2019;2019 doi: 10.1155/2019/5163603. - DOI - PMC - PubMed
Hunter K.T., Ma T. In vitro evaluation of hydroxyapatite-chitosan-gelatin composite membrane in guided tissue regeneration. J. Biomed. Mater. Res. Part A. 2013;101A:1016–1025. doi: 10.1002/jbm.a.34396. - DOI - PubMed
Mohamed K.R., Beherei H.H., El-Rashidy Z.M. In vitro study of nano-hydroxyapatite/chitosan–gelatin composites for bio-applications. J. Adv. Res. 2014;5:201–208. doi: 10.1016/j.jare.2013.02.004. - DOI - PMC - PubMed
Wang X., Wang X., Tan Y., Zhang B., Gu Z., Li X. Synthesis and evaluation of collagen-chitosan- hydroxyapatite nanocomposites for bone grafting. J. Biomed. Mater. Res. Part A. 2009;89:1079–1087. doi: 10.1002/jbm.a.32087. - DOI - PubMed
Mota J., Yu N., Caridade S.G., Luz G.M., Gomes M.E., Reis R.L., Jansen J.A., Frank Walboomers X., Mano J.F., Walboomers X.F., et al. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomater. 2012;8:4173–4180. doi: 10.1016/j.actbio.2012.06.040. - DOI - PubMed
Ren D., Yi H., Wang W., Ma X. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr. Res. 2005;340:2403–2410. doi: 10.1016/j.carres.2005.07.022. - DOI - PubMed
von Burkersroda F., Schedl L., Gopferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials. 2002;23:4221–4231. doi: 10.1016/S0142-9612(02)00170-9. - DOI - PubMed
Tu Y., Chen C., Li Y., Hou Y., Huang M., Zhang L. Fabrication of nano-hydroxyapatite/chitosan membrane with asymmetric structure and its applications in guided bone regeneration. Biomed. Mater. Eng. 2017;28:223. doi: 10.3233/BME-171669. - DOI - PubMed
Aktug S.L., Durdu S., Kalkan S., Cavusoglu K., Usta M. In vitro biological and antimicrobial properties of chitosan-based bioceramic coatings on zirconium. Sci. Rep. 2021;11:1–13. doi: 10.1038/s41598-021-94502-z. - DOI - PMC - PubMed
Paital S.R., Dahotre N.B. Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca–P bioceramic coating. Acta Biomater. 2009;5:2763–2772. doi: 10.1016/j.actbio.2009.03.004. - DOI - PubMed
Jung U.-W., Hwang J.-W., Choi D.-Y., Hu K.-S., Kwon M.-K., Choi S.-H., Kim H.-J. Surface characteristics of a novel hydroxyapatite-coated dental implant. J. Periodontal Implant Sci. 2012;42:63. doi: 10.5051/jpis.2012.42.2.59. - DOI - PMC - PubMed
Xu F., Wei M., Zhang X., Song Y., Zhou W., Wang Y. How Pore Hydrophilicity Influences Water Permeability? Research. 2019;2019:1–10. doi: 10.34133/2019/2581241. - DOI - PMC - PubMed
Wan Y., Yu A., Wu H., Wang Z., Wen D. Porous-conductive chitosan scaffolds for tissue engineering II. In vitro and in vivo degradation. J. Mater. Sci. Mater. Med. 2005;16:1017–1028. doi: 10.1007/s10856-005-4756-x. - DOI - PubMed
Liuyun J., Yubao L., Chengdong X. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J. Biomed. Sci. 2009;16:65–75. doi: 10.1186/1423-0127-16-65. - DOI - PMC - PubMed
Tomihata K., Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials. 1997;18:567–575. doi: 10.1016/S0142-9612(96)00167-6. - DOI - PubMed
Freier T., Koh H.S., Kazazian K., Shoichet M.S. Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials. 2005;26:5872–5878. doi: 10.1016/j.biomaterials.2005.02.033. - DOI - PubMed
Hankiewicz J., Swierczek E. Lysozyme in human body fluids. Clin. Chim. Acta. 1974;57:205–209. doi: 10.1016/0009-8981(74)90398-2. - DOI - PubMed
Hamilton V., Yuan Y.L., Rigney D.A., Chesnutt B.M., Puckett A.D., Ong J.L., Yang Y.Z., Haggard W.O., Elder S.H., Bumgardner J.D. Bone cell attachment and growth on well-characterized chitosan films. Polym. Int. 2007;56:641–647. doi: 10.1002/pi.2181. - DOI
Sailaja G.S., Ramesh P., Kumary T.V., Varma H.K. Human osteosarcoma cell adhesion behaviour on hydroxyapatite integrated chitosan-poly(acrylic acid) polyelectrolyte complex. Acta Biomater. 2006;2:651–657. doi: 10.1016/j.actbio.2006.05.011. - DOI - PubMed
Kong L., Gao Y., Cao W., Gong Y., Zhao N., Zhang X. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. J. Biomed. Mater. Res. Part A. 2005;75A:275–282. doi: 10.1002/jbm.a.30414. - DOI - PubMed
Przekora A. The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications. Mater. Sci. Eng. C. 2019;97:1036–1051. doi: 10.1016/j.msec.2019.01.061. - DOI - PubMed
Correlo V.M., Oliveira J.M., Mano J.F., Neves N.M., Reis R.L. Principles of Regenerative Medicine. Academic Press; Cambridge, MA, USA: 2011. Natural Origin Materials for Bone Tissue Engineering-Properties, Processing, and Performance; pp. 557–586.
Zomorodian E., Baghaban Eslaminejad M. Mesenchymal stem cells as a potent cell source for bone regeneration. Stem Cells Int. 2012;2012 doi: 10.1155/2012/980353. - DOI - PMC - PubMed
Jiang T., Zhang Z., Zhou Y., Liu Y., Wang Z., Tong H., Shen X., Wang Y. Surface functionalization of titanium with chitosan/gelatin via electrophoretic deposition: Characterization and cell behavior. Biomacromolecules. 2010;11:1254–1260. doi: 10.1021/bm100050d. - DOI - PubMed
Uygun B.E., Bou-Akl T., Albanna M., Matthew H.W.T.T. Membrane thickness is an important variable in membrane scaffolds: Influence of chitosan membrane structure on the behavior of cells. Acta Biomater. 2010;6:2126–2131. doi: 10.1016/j.actbio.2009.11.018. - DOI - PMC - PubMed
Park H., Choi B., Nguyen J., Fan J.B., Shafi S., Klokkevold P., Lee M. Anionic carbohydrate-containing chitosan scaffolds for bone regeneration. Carbohydr. Polym. 2013;97:587–596. doi: 10.1016/j.carbpol.2013.05.023. - DOI - PMC - PubMed
Wang G.C., Zheng L., Zhao H.S., Miao J.Y., Sun C.H., Ren N., Wang J.Y., Liu H., Tao X.T. In Vitro Assessment of the Differentiation Potential of Bone Marrow-Derived Mesenchymal Stem Cells on Genipin-Chitosan Conjugation Scaffold with Surface Hydroxyapatite Nanostructure for Bone Tissue Engineering. Tissue Eng. Part A. 2011;17:1341–1349. doi: 10.1089/ten.tea.2010.0497. - DOI - PubMed