Differences in Mechanical and Physicochemical Properties of Several PTFE Membranes Used in Guided Bone Regeneration

Affiliations


Abstract

Non-resorbable PTFE membranes are frequently used in dental-guided bone regeneration (GBR). However, there is a lack of detailed comparative studies that define variations among commonly used PTFE membranes in daily dental clinical practice. The aim of this study was to examine differences in physicochemical and mechanical properties of several recent commercial PTFE membranes for dental GBR (CytoplastTM TXT-200, permamem®, NeoGen®, Surgitime, OsseoGuard®-TXT, OsseoGuard®-NTXT). Such differences have been rarely recorded so far, which might be a reason for the varied clinical results. For that reason, we analyzed their surface architecture, chemical composition, tensile strength, Young's modulus, wettability, roughness, density, thickness and porosity. SEM revealed different microarchitectures among the non-textured membranes; the textured ones had hexagonal indentations and XPS indicated an identical spectral portfolio in all membranes. NeoGen® was determined to be the strongest and OsseoGuard®-TXT was the most elastic. Wettability and roughness were highest for Surgitime but lowest for OsseoGuard®-NTXT. Furthermore, permamem® was the thinnest and NeoGen® was identified as the thickest investigated GBR membrane. The defect volumes and defect volume ratio (%) varied significantly, indicating that permamem® had the least imperfect structure, followed by NeoGen® and then Cytoplast TM TXT-200. These differences may potentially affect the clinical outcomes of dental GBR procedures.

Keywords: PTFE membranes; computerized tomography/CT; guided bone regeneration/GBR; micro-CT; nano-CT; physicochemical properties; porosity.

Conflict of interest statement

The authors declare no conflict of interest. Branko Trajkovski is also an employee of botiss biomaterials GmbH.


Figures


Similar articles

Bacterial Growth on Three Non-Resorbable Polytetrafluoroethylene (PTFE) Membranes-An In Vitro Study.

Zelikman H, Slutzkey G, Rosner O, Levartovsky S, Matalon S, Beitlitum I.Materials (Basel). 2022 Aug 18;15(16):5705. doi: 10.3390/ma15165705.PMID: 36013840 Free PMC article.

Long-term outcome of implants placed with guided bone regeneration (GBR) using resorbable and non-resorbable membranes after 12-14 years.

Jung RE, Fenner N, Hämmerle CH, Zitzmann NU.Clin Oral Implants Res. 2013 Oct;24(10):1065-73. doi: 10.1111/j.1600-0501.2012.02522.x. Epub 2012 Jun 15.PMID: 22697628

Comparison of the performance of natural latex membranes prepared with different procedures and PTFE membrane in guided bone regeneration (GBR) in rabbits.

Moura JM, Ferreira JF, Marques L, Holgado L, Graeff CF, Kinoshita A.J Mater Sci Mater Med. 2014 Sep;25(9):2111-20. doi: 10.1007/s10856-014-5241-1. Epub 2014 May 22.PMID: 24849612

High-density polytetrafluoroethylene membranes in guided bone and tissue regeneration procedures: a literature review.

Carbonell JM, Martín IS, Santos A, Pujol A, Sanz-Moliner JD, Nart J.Int J Oral Maxillofac Surg. 2014 Jan;43(1):75-84. doi: 10.1016/j.ijom.2013.05.017. Epub 2013 Jun 28.PMID: 23810680 Review.

Collagen based barrier membranes for periodontal guided bone regeneration applications.

Sheikh Z, Qureshi J, Alshahrani AM, Nassar H, Ikeda Y, Glogauer M, Ganss B.Odontology. 2017 Jan;105(1):1-12. doi: 10.1007/s10266-016-0267-0. Epub 2016 Sep 9.PMID: 27613193 Review.


KMEL References


References

  1.  
    1. Omar O., Elgali I., Dahlin C., Thomsen P. Barrier membranes: More than the barrier effect? J. Clin. Periodontol. 2019;46:103–123. doi: 10.1111/jcpe.13068. - DOI - PMC - PubMed
  2.  
    1. Elgali I., Omar O., Dahlin C., Thomsen P. Guided bone regeneration: Materials and biological mechanisms revisited. Eur. J. Oral Sci. 2017;125:315–337. doi: 10.1111/eos.12364. - DOI - PMC - PubMed
  3.  
    1. Retzepi M., Donos N. Guided Bone Regeneration: Biological principle and therapeutic applications. Clin. Oral Implants Res. 2010;21:567–576. doi: 10.1111/j.1600-0501.2010.01922.x. - DOI - PubMed
  4.  
    1. Rathnayake N., Trajkovski B., Rahman B., Zafiropoulos G.G. Clinical applications and outcomes of non-resorbable polytetrafluoroethylene (PTFE) membranes in guided bone regeneration: Review. J. Int. Dent. Med. Res. 2019;12:1626–1635.
  5.  
    1. Caballé-Serrano J., Munar-Frau A., Delgado L., Pérez R., Hernández–Alfaro F. Physicochemical characterization of barrier membranes for bone regeneration. J. Mech. Beh. Biomed Mater. 2019;97:13–20. doi: 10.1016/j.jmbbm.2019.04.053. - DOI - PubMed
  6.  
    1. Soldatos N.K., Stylianou P., Koidou P., Angelov N., Yukna R., Romanos G.E. Limitations and options using resorbable versus non-resorbable membranes for successful guided bone regeneration. Quintessence Int. 2017;48:131–147. - PubMed
  7.  
    1. Turri A., Čirgić E., Shah F.A., Hoffman M., Omar O., Dahlin C., Trobos M. Early plaque formation on PTFE membranes with expanded or dense surface structures applied in the oral cavity of human volunteers. Clin. Exp. Dent. Res. 2021;7:137–146. doi: 10.1002/cre2.344. - DOI - PMC - PubMed
  8.  
    1. Dimitriou R., Mataliotakis G.I., Calori G.M., Giannoudis P. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: Current experimental and clinical evidence. BMC Med. 2012;10:1–24. doi: 10.1186/1741-7015-10-81. - DOI - PMC - PubMed
  9.  
    1. Hämmerle C.H.F., Jung R.E. Bone augmentation by means of barrier membranes. Periodontol. 2000. 2003;33:36–53. doi: 10.1046/j.0906-6713.2003.03304.x. - DOI - PubMed
  10.  
    1. Bartee B.K., Carr J.A. Evaluation of a high-density polytetrafluoroethylene (n-PTFE) membrane as a barrier material to facilitate guided bone regeneration in the rat mandible. J. Oral. Implantol. 1995;21:88–95. - PubMed
  11.  
    1. Carbonell J., Martín I., Santos A., Pujol A., Sanz-Moliner J.J.N. High-density polytetrafluoroethylene membranes in guided bone and tissue regeneration procedures: A literature review. Int. J. Oral. Maxillofac. Surg. 2014;43:75–84. doi: 10.1016/j.ijom.2013.05.017. - DOI - PubMed
  12.  
    1. Bartee B.K. Evaluation of a new polytetrafluoroethylene guided tissue regeneration membrane in healing extraction sites. Compend. Contin. Educ. Dent. 1998;19:1256–1258. - PubMed
  13.  
    1. Ronda M., Rebaudi A., Torelli L., Stacchi C. Expanded vs. dense polytetrafluoroethylene membranes in vertical ridge augmentation around dental implants: A prospective randomized controlled clinical trial. Clin. Oral. Implant Res. 2014;25:859–866. doi: 10.1111/clr.12157. - DOI - PubMed
  14.  
    1. Scantlebury T., Ambruster J. The development of guided regeneration: Making the impossible possible and the unpredictable predictable. Evi Bas Dent Prac. 2012;12:101–117. doi: 10.1016/S1532-3382(12)70022-2. - DOI - PubMed
  15.  
    1. Chi L., Qian Y., Zhang B., Zhang Z., Jiang Z. Surface engineering and self-cleaning properties of the novel TiO2/PAA/PTFE ultrafiltration membranes. Appl. Petrochem. Res. 2016;6:225–233. doi: 10.1007/s13203-016-0158-x. - DOI
  16.  
    1. Gentile P., Chiono V., Tonda-Turo C., Ferreira A.M., Ciardelli G. Polymeric membranes for guided bone regeneration. Biotechnol. J. 2011;6:1187–1197. doi: 10.1002/biot.201100294. - DOI - PubMed
  17.  
    1. Glaris P., Coulon J.-F., Dorget M., Poncin-Epaillard F. Thermal annealing as a new simple method for PTFE texturing. Polymer. 2013;54:5858–5864. doi: 10.1016/j.polymer.2013.08.011. - DOI
  18.  
    1. Trobos M., Juhlin A., Shah F.A., Hoffman M., Sahlin H., Dahlin C. In vitro evaluation of barrier function against oral bacteria of dense and expanded polytetrafluoroethylene (PTFE) membranes for guided bone regeneration. Clin. Implant Dent. Relat. Res. 2018;20:738–748. doi: 10.1111/cid.12629. - DOI - PubMed
  19.  
    1. Begic G., Petkovic Didovic M., Lucic Blagojevic S., Jelovica Badovinac I., Žigon J., Percic M., Cvijanovic Peloza O., Gobin I. Adhesion of oral bacteria to commercial d-PTFE membranes: Polymer microstructure makes a difference. Int. J. Mol. Sci. 2022;23:2983. doi: 10.3390/ijms23062983. - DOI - PMC - PubMed
  20.  
    1. Jiang Y., Bo Li B., Tanabashi Y. Estimating the relation between surface roughness and mechanical properties of rock joints. Int. J. Rock Mech. Min. 2006;43:837–846. doi: 10.1016/j.ijrmms.2005.11.013. - DOI
  21.  
    1. Rakhmatia Y.D., Ayukawa Y., Furuhashi A., Koyano K. Current barrier membranes: Titanium mesh and other membranes for guided bone regeneration in dental applications. J. Prosthodont. Res. 2013;57:3–14. doi: 10.1016/j.jpor.2012.12.001. - DOI - PubMed
  22.  
    1. Park J.Y., Lee J.H., Kim C.H., Kim Y.J. Fabrication of polytetrafluoroethylene nanofibrous membranes for guided bone regeneration. RSC Adv. 2018;8:34359–34369. doi: 10.1039/C8RA05637D. - DOI - PMC - PubMed
  23.  
    1. Park H., Tinh V.D.C., Kim D. Surface hydrophilization toward the proton conductive porous PTFE substrate impregnating SPEEK for polymer electrolyte membranes. Progr. Org. Coat. 2022;163:106643. doi: 10.1016/j.porgcoat.2021.106643. - DOI
  24.  
    1. Dowling D.P., Miller I.S., Ardhaoui M., Gallagher W.M. Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. J. Biomater. Appl. 2011;26:327–347. doi: 10.1177/0885328210372148. - DOI - PubMed
  25.  
    1. Tasiopoulos C.P., Petronis S., Sahlin H., Hedhammar M. Surface functionalization of PTFE membranes intended for guided bone regeneration using recombinant spider silk. ACS Appl. Bio Mater. 2020;3:577–583. doi: 10.1021/acsabm.9b00972. - DOI - PubMed
  26.  
    1. Raz P., Brosh T., Ronen G., Tal H. Tensile Properties of three selected collagen membranes. Biomed. Res. Int. 2019;2019:5163603. doi: 10.1155/2019/5163603. - DOI - PMC - PubMed
  27.  
    1. Wang K., Hou D., Wang J., Wang Z., Tian B., Liang P. Hydrophilic surface coating on hydrophobic PTFE membrane for robust anti-oil-fouling membrane distillation. Appl. Surf. Sci. 2018;450:57–65. doi: 10.1016/j.apsusc.2018.04.180. - DOI
  28.  
    1. Trajkovski B., Jaunich M., Müller W.D., Beuer F., Zafiropoulos G.G., Houshmand A. Hydrophilicity, viscoelastic, and physicochemical properties variations in dental bone grafting substitutes. Materials. 2018;11:215. doi: 10.3390/ma11020215. - DOI - PMC - PubMed
  29.  
    1. Bumgardner J.D., Wiser R., Elder S.H., Jouett R., Yang Y., Ong J.L. Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. J. Biomater. Sci. Polym. Ed. 2003;14:1401–1409. doi: 10.1163/156856203322599734. - DOI - PubMed
  30.  
    1. Quirynen M., Bollen C.M. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature. J. Clin. Periodontol. 1995;22:1–14. doi: 10.1111/j.1600-051X.1995.tb01765.x. - DOI - PubMed
  31.  
    1. Wenzel R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936;28:988–994. doi: 10.1021/ie50320a024. - DOI
  32.  
    1. Wang X.L., Qu Z.G., Lai T., Ren G.F., Wang W.K. Enhancing water transport performance of gas diffusion layers through coupling manipulation of pore structure and hydrophobicity. J. Power Sources. 2022;525:231121. doi: 10.1016/j.jpowsour.2022.231121. - DOI
  33.  
    1. Falde E.J., Yohe S.T., Colson Y.L., Grinstaff M. Superhydrophobic materials for biomedical applications. Biomaterials. 2016;104:87–103. doi: 10.1016/j.biomaterials.2016.06.050. - DOI - PMC - PubMed
  34.  
    1. Barber H.D., Lignelli J., Smith B.M., Bartee B.K. Using a dense PTFE membrane without primary closure to achieve bone and tissue regeneration. J. Oral Maxillofac. Surg. 2007;65:748–752. doi: 10.1016/j.joms.2006.10.042. - DOI - PubMed
  35.  
    1. Zellin G., Linde A. Effects of different osteopromotive membrane porosities on experimental bone neogenesis in rats. Biomaterials. 1996;17:695–702. doi: 10.1016/0142-9612(96)86739-1. - DOI - PubMed
  36.  
    1. Stamopoulos A.G., Tserpes K.I., Prucha P., Vavrik D. Evaluation of porosity effects on the mechanical properties of carbon fiber-reinforced plastic unidirectional laminates by X-ray computed tomography and mechanical testing. J. Compos. Mater. 2016;50:2087–2098. doi: 10.1177/0021998315602049. - DOI
  37.  
    1. Bertoldi S., Farè S., Tanzi M.C. Assessment of scaffold porosity: The new route of micro-CT. J. Appl. Biomater. Biomech. 2011;9:165–175. doi: 10.5301/JABB.2011.8863. - DOI - PubMed
  38.  
    1. McGaughey A.L., Karandikar P., Gupta M., Childress A.E. Hydrophobicity versus pore size: Polymer coatings to improve membrane wetting resistance for membrane distillation. ACS Appl. Polym. Mater. 2020;23:1256–1267. doi: 10.1021/acsapm.9b01133. - DOI
  39.  
    1. Kampschulte M., Langheinirch A.C., Sender J., Litzlbauer H.D., Althöhn U., Schwab J.D., Alejandre-Lafont E., Martels G., Krombach G.A. Nano-computed tomography: Technique and applications. RoFo. 2016;188:146–154. doi: 10.1055/s-0041-106541. - DOI - PubMed
  40.  
    1. Gottlow J. Guided tissue regeneration using bioresorbable and nonresorbable devices: Initial healing and long-term results. J. Periodontol. 1993;64((Suppl. S11)):1157–1165. doi: 10.1902/jop.1993.64.11s.1157. - DOI - PubMed
  41.  
    1. Scantlebury T.V. 1982-1992: A decade of technology development for guided tissue regeneration. J. Periodontol. 1993;64((Suppl. S11)):1129–1137. doi: 10.1902/jop.1993.64.11s.1129. - DOI - PubMed