In-vitro evaluation of the effectiveness of polyphenols based strawberry extracts for dental bleaching

Affiliations


Abstract

To formulate a dental bleaching agent with strawberry extract that has potent bleaching properties and antimicrobial efficacy. Enamel specimens (3 × 3 × 2 mm3) were prepared. Quaternary Ammonium Silane (CaC2 enriched) was homogenized with fresh strawberries: Group 1: supernatant strawberry (10 g) extract < Group 2: supernatant strawberry (10 g) extract + 15%HA (Hydroxyapatite) < Group 3: supernatant strawberry (10 g) extract + 15% (HA-2%k21) < Group 4: supernatant strawberry (20 g) extract only (20 g strawberries) < Group 5: supernatant strawberry (20 g) extract + 15% HA < Group 6: supernatant strawberry (20 g) extract + 15% (HA-2%K21) < Group 7: In-office Opalescence Boost 35%. Single-colony lactobacillus was examined using confocal microscopy identifying bacterial growth and inhibition in presence of bleaching agents using 300 µL aliquot of each bacterial culture. Images were analysed by illuminating with a 488 nm argon/helium laser beam. Colour difference (∆E00) was calculated using an Excel spreadsheet implementation of the CIEDE2000 colour difference formula and colour change measured between after staining and after bleaching. Scanning electron microscope was used to image specimens. Raman spectra were collected, and enamel slices were used for STEM/TEM analysis. HPLC was used for strawberry extract analysis. Nano-indentation was performed and X-ray photoelectron spectroscopy. Antioxidant activity was determined along with molecular simulation. hDPSCs were expanded for Alamar Blue Analysis and SEM. Mean colour change was significantly reduced in group 1 compared to other groups (p < 0.05). CLSM showed detrimental effects of different strawberry extracts on bioflms, especially with antimicrobial (p < 0.05). Groups 1, 2 and 3 showed flatter/irregular surfaces with condensation of anti-microbial in group 3. In strawberry specimens, bands predominate at 960 cm-1. HPLC determined the strawberry extracts content. Molecular simulation verified interaction between calcium and polyphenol components. XPS peak-fitted high-resolution corresponding results of Ca2p3/2 and Ca2p1/2 for all k21 groups. Combination of 10 g strawberry extract supernatant and 15% (hydroxyapatite 2%k21) improved the whiteness and provided additional antimicrobial potential. The novel strawberry extract and antimicrobial based dental formulation had immediate bleaching effect without promoting significant changes in enamel morphology.

Conflict of interest statement

The authors declare no competing interests.


Similar articles

In vitro effects of hydrogen peroxide combined with different activators for the in-office bleaching technique on enamel.

Lima DA, Aguiar FH, Pini NI, Soares LE, Martin AA, Liporoni PC, Ambrosano GM, Lovadino JR.Acta Odontol Scand. 2015;73(7):516-21. doi: 10.3109/00016357.2014.997793. Epub 2015 Jan 27.PMID: 25626117

Effects of hydrogen peroxide bleaching strips on tooth surface color, surface microhardness, surface and subsurface ultrastructure, and microchemical (Raman spectroscopic) composition.

Duschner H, Götz H, White DJ, Kozak KM, Zoladz JR.J Clin Dent. 2006;17(3):72-8.PMID: 17022369

Effects of elevated hydrogen peroxide 'strip' bleaching on surface and subsurface enamel including subsurface histomorphology, micro-chemical composition and fluorescence changes.

Götz H, Duschner H, White DJ, Klukowska MA.J Dent. 2007 Jun;35(6):457-66. doi: 10.1016/j.jdent.2007.01.004. Epub 2007 Mar 6.PMID: 17339072

Effect of in-office bleaching with 35% hydrogen peroxide with and without addition of calcium on the enamel surface.

de Moraes IQ, Silva LN, Porto IC, de Lima Neto CF, Dos Santos NB, Fragoso LS.Microsc Res Tech. 2015 Nov;78(11):975-81. doi: 10.1002/jemt.22561. Epub 2015 Aug 17.PMID: 26279091

Physical, morphological, and micro-Raman chemical studies on bleaching strip effects on enamel, coronal dentin, and root dentin.

Götz H, Klukowska MA, Duschner H, White DJ.J Clin Dent. 2007;18(4):112-9.PMID: 18277741


KMEL References


References

  1.  
    1. Lima SNL, Ribeiro IS, Grisotto MA, Fernandes ES, Hass V, de Jesus Tavarez RR, Pinto SCS, Lima DM, Loguercio AD, Bandeca MC. Evaluation of several clinical parameters after bleaching with hydrogen peroxide at different concentrations: A randomized clinical trial. J. Dent. 2018;68:91–97. doi: 10.1016/j.jdent.2017.11.008. - DOI - PubMed
  2.  
    1. Moosavi H, Darvishzadeh F. The influence of post bleaching in stain absorption and microhardness. Open Dent. J. 2016;10:69–78. doi: 10.2174/1874210616021000069. - DOI - PMC - PubMed
  3.  
    1. Zanolla J, Marques A, da Costa DC, de Souza AS, Coutinho M. Influence of tooth bleaching on dental enamel microhardness: A systematic review and meta-analysis. Aust. Dent. J. 2017;62(3):276–282. doi: 10.1111/adj.12494. - DOI - PubMed
  4.  
    1. Farawati FAL, Hsu SM, O’Neill E, Neal D, Clark A, Esquivel-Upshaw J. Effect of carbamide peroxide bleaching on enamel characteristics and susceptibility to further discoloration. J. Prosthet. Dent. 2019;121(2):340–346. doi: 10.1016/j.prosdent.2018.03.006. - DOI - PMC - PubMed
  5.  
    1. Rezende M, Ferri L, Kossatz S, Loguercio AD, Reis A. Combined bleaching technique using low and high hydrogen peroxide in-office bleaching gel. Oper. Dent. 2016;41:388–396. doi: 10.2341/15-266-C. - DOI - PubMed
  6.  
    1. Wang Y, Gao J, Jiang T, Liang S, Zhou Y, Matis BA. Evaluation of the efficacy of potassium nitrate and sodium fluoride as desensitizing agents during tooth bleaching treatment. A systematic review and meta-analysis. J. Dent. 2015;43:913–923. doi: 10.1016/j.jdent.2015.03.015. - DOI - PubMed
  7.  
    1. De Moor RJG, et al. Insight in the chemistry of laser-activated dental bleaching. Sci. World J. 2015;2015:650492. doi: 10.1155/2015/650492. - DOI - PMC - PubMed
  8.  
    1. Fiorillo L, Laino L, De Stefano R, et al. Dental whitening gels: Strengths and weaknesses of an increasingly used method. Gels. 2019;5(3):35. doi: 10.3390/gels5030035. - DOI - PMC - PubMed
  9.  
    1. Sun L, Liang S, Sa Y, Wang Z, Ma X, Jiang T. Surface alteration of human tooth enamel subjected to acidic and neutral 30% hydrogen peroxide. J. Dent. 2011;39:686–692. doi: 10.1016/j.jdent.2011.07.011. - DOI - PubMed
  10.  
    1. Soares DG, Ribeiro APD, Sacono NT, Loguercio AD, Hebling J, Costa CAS. Mineral loss and morphological changes in dental enamel induced by a 16% carbamide peroxide bleaching gel. Braz. Dent. J. 2013;24:517–521. doi: 10.1590/0103-6440201302225. - DOI - PubMed
  11.  
    1. de Almeida LC, Soares DG, Gallinari MO, de Souza Costa CA, dos Santos PH, Briso AL. Color alteration, hydrogen peroxide diffusion, and cytotoxicity caused by in-office bleaching protocols. Clin. Oral Invest. 2015;19:673–680. doi: 10.1007/s00784-014-1285-3. - DOI - PubMed
  12.  
    1. Cvilk B, Lussi A, Moritz A, Flury S. Enamel surface changes after exposure to bleaching gels containing carbamide peroxide or hydrogen peroxide. Oper. Dent. 2016;41:39–47. doi: 10.2341/15-010-L. - DOI - PubMed
  13.  
    1. Soares DG, Basso FG, Hebling J, de Souza Costa CA. Concentrations of and application protocols for hydrogen peroxide bleaching gels: Effects on pulp cell viability and whitening efficacy. J. Dent. 2014;42:185–198. doi: 10.1016/j.jdent.2013.10.021. - DOI - PubMed
  14.  
    1. Rezende M, Loguercio AD, Kossatz S, Reis A. Predictive factors on the efficacy and risk/intensity of tooth sensitivity of dental bleaching: A multi regression and logistic analysis. J. Dent. 2016;45:1–6. doi: 10.1016/j.jdent.2015.11.003. - DOI - PubMed
  15.  
    1. George L, Baby A, Dhanapal TP, Charlie KM, Joseph A, Varghese AA. Evaluation and comparison of the microhardness of enamel after bleaching with fluoride free and fluoride containing carbamide peroxide bleaching agents and post bleaching anticay application: An in vitro study. Contemp. Clin. Dent. 2015;6:163–166. doi: 10.4103/0976-237X.166835. - DOI - PMC - PubMed
  16.  
    1. Baldea I. Toxicity and efficiency study of plant extracts-based bleaching agents. Clin. Oral. Investig. 2017;21:1315–1326. doi: 10.1007/s00784-016-1882-4. - DOI - PubMed
  17.  
    1. Rezende M, De Geus JL, Loguercio AD, Reis A, Kossatz D. Clinical evaluation of genotoxicity of in-office bleaching. Oper. Dent. 2016;41:578–586. doi: 10.2341/15-207-C. - DOI - PubMed
  18.  
    1. Gasmi Benahmed A, Gasmi A, Menzel A, Hrynovets I, Chirumbolo S, Shanaida M, Lysiuk R, Shanaida Y, Dadar M, Bjørklund G. A review on natural teeth whitening. J. Oral Biosci. 2022;64(1):49–58. doi: 10.1016/j.job.2021.12.002. - DOI - PubMed
  19.  
    1. Ribeiro JS, Barboza ADS, Cuevas-Suárez CE. Novel in-office peroxide-free tooth-whitening gels: Bleaching effectiveness, enamel surface alterations, and cell viability. Sci. Rep. 2020;10(2):10016. doi: 10.1038/s41598-020-66733-z. - DOI - PMC - PubMed
  20.  
    1. Rodríguez-Barragué J, Vola-Gelmini J, Skuras-Siedemburg M, Rivera-Gonzaga JA, Cuevas-Suarez CE. Natural antioxidants to restore immediate bond strength to bleached enamel: Systematic review and meta-analysis of in vitro studies. J. Esthet. Restor. Dent. 2021;33(5):702–712. doi: 10.1111/jerd.12743. - DOI - PubMed
  21.  
    1. Schwarzbold CG, Cuevas-Suárez CE, Pacheco RR, Ribeiro JS, Carreño NLV, Lund RG, Piva E. In vitro efficacy of commercial and experimental proteolytic enzyme-based whitening dentifrices on enamel whitening and superficial roughness. J. Esthet. Restor. Dent. 2021;33(6):849–855. doi: 10.1111/jerd.12690. - DOI - PubMed
  22.  
    1. Aaby K, Mazur S, Nes A, Skrede G. Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chem. 2012;132:86–97. doi: 10.1016/j.foodchem.2011.10.037. - DOI - PubMed
  23.  
    1. Jiang T, Ma X, Wang W, Tong H, Hu J, Wang Y. Beneficial effects of hydroxyapatite on enamel subjected to 30% hydrogen peroxide. J. Dent. 2008;36:907–914. doi: 10.1016/j.jdent.2008.07.005. - DOI - PubMed
  24.  
    1. Li Y, Shi X, Li W. Zinc-containing hydroxyapatite enhances cold-light-activated tooth bleaching treatment in vitro. BioMed. Res. Inter. 2017;10:6261248. - PMC - PubMed
  25.  
    1. Daood U, Matinlinna JP, Pichika MR, Mak KK, Nagendrababu V, Fawzy AS. A quaternary ammonium silane antimicrobial triggers bacterial membrane and biofilm destruction. Sci. Rep. 2020;10:10970. doi: 10.1038/s41598-020-67616-z. - DOI - PMC - PubMed
  26.  
    1. Paravina RD, Perez MM, Ghinea R. Acceptability, and perceptibility thresholds in dentistry: a comprehensive review of clinical and research applications. J. Esthet. Restor. Dent. 2019;31:103–112. doi: 10.1111/jerd.12465. - DOI - PubMed
  27.  
    1. Kohli A, Al-Haddad A, Siew AY, Nam WL, Hamdan HD, Roslan QA. Spectrophotometric evaluation of the efficacy of natural versus commercial bleaching agents. Am. J. Dent. 2021;34:75–79. - PubMed
  28.  
    1. Daood U, Yiu CKY, Burrow MF, Niu LN, Tay FR. Effect of a novel quaternary ammonium silane cavity disinfectant on durability of resin-dentine bond. J. Dent. 2017;60:77–86. doi: 10.1016/j.jdent.2017.03.003. - DOI - PubMed
  29.  
    1. Daood U, Parolia A, Matinlinna J, Yiu C, Ahmed HMA, Fawzy A. Properties of a modified quaternary ammonium silane formulation as a potential root canal irrigant in endodontics. Dent. Mater. 2020;36:e386–e402. doi: 10.1016/j.dental.2020.09.008. - DOI - PubMed
  30.  
    1. Daood U, Burrow MF, Yiu CKY. Effect of a novel quaternary ammonium silane cavity disinfectant on cariogenic biofilm formation. Clin. Oral. Investig. 2020;24:649–661. doi: 10.1007/s00784-019-02928-7. - DOI - PubMed
  31.  
    1. Kwasniewska D, Chen YL, Wieczorek D. Biological activity of quaternary ammonium salts and their derivatives. Pathogens. 2020;9:459–467. doi: 10.3390/pathogens9060459. - DOI - PMC - PubMed
  32.  
    1. Liu Y, Xu D, Wu Y, Sun H, Gao H. Comparative study on the hydrolysis kinetics of substituted ethoxysilanes by liquid-state 29Si. NMR J. Non-Cryst. Solids. 2004;4:61–70. doi: 10.1016/j.jnoncrysol.2004.07.032. - DOI
  33.  
    1. Isquith AJ, Abbott EA, Walters PA. Surface-bonded antimicrobial activity of an organosilicon quaternary ammonium chloride. Appl. Microbiol. 1973;24:859–863. doi: 10.1128/am.24.6.859-863.1972. - DOI - PMC - PubMed
  34.  
    1. Al-Fatimi A, Wurster M, Schroder G, Lindequist U. In vitro antimicrobial, cytotoxic, and radical scavenging activities, and chemical constituents of the endemic Thymus laevigatus (Vahl) Records. Nat. Products. 2010;4:49–63.
  35.  
    1. Fayad NK, Al-Obaidi OHS, Al-Noor T, Ezzat MO. Water and alcohol extraction of thyme plant (Thymus vulgaris) and activity study against bacteria, tumors and used as anti-oxidant in margarine manufacture. Inno. Sys. Design. Eng. 2013;4:41–51.
  36.  
    1. Chen X, Wu T, Wang Q, Shen JW. Shield effect of silicate on adsorption of proteins onto silicon-doped hydroxyapatite (100) surface. Biomater. 2008;29:2423–2432. doi: 10.1016/j.biomaterials.2008.02.002. - DOI - PubMed
  37.  
    1. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative. Med. Cell. Longev. 2009;2:270–278. doi: 10.4161/oxim.2.5.9498. - DOI - PMC - PubMed
  38.  
    1. Ribeiro JS, Barboza ADS, Cuevas-Suárez CE, da Silva AF, Piva E, Lund RG. Novel in-office peroxide-free tooth-whitening gels: Bleaching effectiveness, enamel surface alterations, and cell viability. Sci. Rep. 2020;22:10016. doi: 10.1038/s41598-020-66733-z. - DOI - PMC - PubMed
  39.  
    1. Dr. Klaus Witt, BAM, Germany. Excel spreadsheet implementation of Code for CIE Color Difference formula CIEDE2000. https://www.rit.edu/cos/colorscience/rc_useful_data.php. Accessed on 30 Mar 2020.
  40.  
    1. Paravina RD, Pérez MM, Ghinea R. Acceptability and perceptibility thresholds in dentistry: A comprehensive review of clinical and research applications. J. Esthet. Restor. Dent. 2019;31:103–112. doi: 10.1111/jerd.12465. - DOI - PubMed
  41.  
    1. Pérez M, Ghinea R, Rivas MJ, Yebra A, Ionescu AM, Paravina RD, Herrera LJ. Development of a customized whiteness index for dentistry based on CIELAB color space. Dent. Mater. 2016;32:461–467. doi: 10.1016/j.dental.2015.12.008. - DOI - PubMed
  42.  
    1. Schrof S, Varga P, Galvis L, Raum K, Masic A. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae. J. Struct. Bio. 2014;187:266–275. doi: 10.1016/j.jsb.2014.07.001. - DOI - PubMed
  43.  
    1. Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011;4:41272–41276.
  44.  
    1. Cavalcanti BN, Rode SM, Marques MM. Cytotoxicity of substances leached or dissolved from pulp capping materials. Int. Endod. J. 2005;38:505–509. doi: 10.1111/j.1365-2591.2005.00967.x. - DOI - PubMed