Identification of Maturity-Onset-Diabetes of the Young (MODY) mutations in a country where diabetes is endemic

Affiliations


Abstract

Genetic variants responsible for Maturity-Onset-Diabetes of the Young (MODY) in Kuwait were investigated. A newly established a National Referral Clinic, the Dasman Diabetes Institute (DDI-NRC), assessed forty-five members from 31 suspected MODY families by whole exome sequencing. Thirty-three of the 45 samples were independently sequenced at the DDI-NRI, Exeter University, UK ( https://www.diabetesgenes.org/ ) using targeted 21-gene panel approach. Pathogenic mutations in GCK, HNF1A, HNF1B, HNF4A, and PDX1 confirmed MODY in 7 families, giving an overall positivity rate of 22.6% in this cohort. Novel variants were identified in three families in PDX1, HNF1B, and HNF1B. In this cohort, Multiplex Ligation-dependent Probe Amplification assay did not add any value to MODY variant detection rate in sequencing negative cases. In highly selected familial autoantibody negative diabetes, known MODY genes represent a minority and 77.3% of the familial cases have yet to have a causal variant described.

Conflict of interest statement

The authors declare no competing interests.


Figures


Similar articles

Frequency and characterization of mutations in genes in a large cohort of patients referred to MODY registry.

Breidbart E, Deng L, Lanzano P, Fan X, Guo J, Leibel RL, LeDuc CA, Chung WK.J Pediatr Endocrinol Metab. 2021 Apr 13;34(5):633-638. doi: 10.1515/jpem-2020-0501. Print 2021 May 26.PMID: 33852230 Free PMC article.

The Mutation Spectrum of Maturity Onset Diabetes of the Young (MODY)-Associated Genes among Western Siberia Patients.

Ivanoshchuk DE, Shakhtshneider EV, Rymar OD, Ovsyannikova AK, Mikhailova SV, Fishman VS, Valeev ES, Orlov PS, Voevoda MI.J Pers Med. 2021 Jan 18;11(1):57. doi: 10.3390/jpm11010057.PMID: 33477506 Free PMC article.

Comprehensive molecular analysis of Japanese patients with pediatric-onset MODY-type diabetes mellitus.

Yorifuji T, Fujimaru R, Hosokawa Y, Tamagawa N, Shiozaki M, Aizu K, Jinno K, Maruo Y, Nagasaka H, Tajima T, Kobayashi K, Urakami T.Pediatr Diabetes. 2012 Feb;13(1):26-32. doi: 10.1111/j.1399-5448.2011.00827.x. Epub 2011 Nov 8.PMID: 22060211

Precision diabetes: Lessons learned from maturity-onset diabetes of the young (MODY).

Tosur M, Philipson LH.J Diabetes Investig. 2022 Sep;13(9):1465-1471. doi: 10.1111/jdi.13860. Epub 2022 Jun 16.PMID: 35638342 Free PMC article. Review.

Maturity onset diabetes of the young: Seek and you will find.

Heuvel-Borsboom H, de Valk HW, Losekoot M, Westerink J.Neth J Med. 2016 Jun;74(5):193-200.PMID: 27323672 Review.


Cited by

A case of maturity-onset diabetes of the young type 4 in Korea.

Park GM, Lee S, Seo JY, Lim KI.Ann Pediatr Endocrinol Metab. 2023 Jun;28(2):149-154. doi: 10.6065/apem.2142188.094. Epub 2022 May 16.PMID: 35592899 Free PMC article.


KMEL References


References

  1.  
    1. Fajans SS, Bell GI. MODY: history, genetics, pathophysiology, and clinical decision making. Diabetes Care. 2011;34:1878–1884. doi: 10.2337/dc11-0035. - DOI - PMC - PubMed
  2.  
    1. Oliveira SC, Neves JS, Pérez A, Carvalho D. Maturity-onset diabetes of the young: From a molecular basis perspective toward the clinical phenotype and proper management. Endocrinol. Diabetes Nutr. 2020;67:137–147. doi: 10.1016/j.endinu.2019.07.012. - DOI - PubMed
  3.  
    1. Lambert AP, et al. Identifying hepatic nuclear factor 1alpha mutations in children and young adults with a clinical diagnosis of type 1 diabetes. Diabetes Care. 2003;26:333–337. doi: 10.2337/diacare.26.2.333. - DOI - PubMed
  4.  
    1. Møller AM, et al. Mutations in the hepatocyte nuclear factor-1alpha gene in Caucasian families originally classified as having Type I diabetes. Diabetologia. 1998;41:1528–1531. doi: 10.1007/s001250051101. - DOI - PubMed
  5.  
    1. Awa WL, et al. Reclassification of diabetes type in pediatric patients initially classified as type 2 diabetes mellitus: 15 years follow-up using routine data from the German/Austrian DPV database. Diabetes Res. Clin. Pract. 2011;94:463–467. doi: 10.1016/j.diabres.2011.09.011. - DOI - PubMed
  6.  
    1. Kleinberger JW, et al. Monogenic diabetes in overweight and obese youth diagnosed with type 2 diabetes: the TODAY clinical trial. Genet. Med. 2018;20:583–590. doi: 10.1038/gim.2017.150. - DOI - PMC - PubMed
  7.  
    1. Stanik J, et al. De novo mutations of GCK, HNF1A and HNF4A may be more frequent in MODY than previously assumed. Diabetologia. 2014;57:480–484. doi: 10.1007/s00125-013-3119-2. - DOI - PubMed
  8.  
    1. De Franco E, et al. The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: An international cohort study. Lancet. 2015;386:957–963. doi: 10.1016/s0140-6736(15)60098-8. - DOI - PMC - PubMed
  9.  
    1. Hattersley AT, et al. ISPAD Clinical Practice Consensus Guidelines 2018: The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr. Diabetes. 2018;19(Suppl 27):47–63. doi: 10.1111/pedi.12772. - DOI - PubMed
  10.  
    1. Pearson ER, et al. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet. 2003;362:1275–1281. doi: 10.1016/s0140-6736(03)14571-0. - DOI - PubMed
  11.  
    1. Hattersley AT, Patel KA. Precision diabetes: learning from monogenic diabetes. Diabetologia. 2017;60:769–777. doi: 10.1007/s00125-017-4226-2. - DOI - PMC - PubMed
  12.  
    1. Sanyoura M, Philipson LH, Naylor R. Monogenic diabetes in children and adolescents: Recognition and treatment options. Curr. Diab. Rep. 2018;18:58. doi: 10.1007/s11892-018-1024-2. - DOI - PMC - PubMed
  13.  
    1. Landrum MJ, Kattman BL. ClinVar at five years: Delivering on the promise. Hum. Mutat. 2018;39:1623–1630. doi: 10.1002/humu.23641. - DOI - PubMed
  14.  
    1. Johansson BB, et al. Targeted next-generation sequencing reveals MODY in up to 6.5% of antibody-negative diabetes cases listed in the Norwegian Childhood Diabetes Registry. Diabetologia. 2017;60:625–635. doi: 10.1007/s00125-016-4167-1. - DOI - PubMed
  15.  
    1. Bellanné-Chantelot C, et al. Large genomic rearrangements in the hepatocyte nuclear factor-1beta (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young type 5. Diabetes. 2005;54:3126–3132. doi: 10.2337/diabetes.54.11.3126. - DOI - PubMed
  16.  
    1. Al-Kandari H, Al-Abdulrazzaq D, Davidsson L, Al-Mulla F. Maturity-onset diabetes of the young (MODY): A time to act. Lancet Diabetes Endocrinol. 2020;8:565–566. doi: 10.1016/s2213-8587(20)30150-9. - DOI - PubMed
  17.  
    1. Amara A, et al. Familial early-onset diabetes is not a typical MODY in several Tunisian patients. Tunis Med. 2012;90:882–887. - PubMed
  18.  
    1. Ben Khelifa S, et al. Maturity Onset Diabetes of the Young (MODY) in Tunisia: Low frequencies of GCK and HNF1A mutations. Gene. 2018;651:44–48. doi: 10.1016/j.gene.2018.01.081. - DOI - PubMed
  19.  
    1. Dallali H, et al. Genetic characterization of suspected MODY patients in Tunisia by targeted next-generation sequencing. Acta Diabetol. 2019;56:515–523. doi: 10.1007/s00592-018-01283-5. - DOI - PubMed
  20.  
    1. Woodhouse NJ, et al. Clinically-Defined Maturity Onset Diabetes of the Young in Omanis: Absence of the common Caucasian gene mutations. Sultan Qaboos Univ. Med. J. 2010;10:80–83. - PMC - PubMed
  21.  
    1. Hebbar P, et al. Genome-wide association study identifies novel risk variants from RPS6KA1, CADPS, VARS, and DHX58 for fasting plasma glucose in Arab population. Sci. Rep. 2020;10:152. doi: 10.1038/s41598-019-57072-9. - DOI - PMC - PubMed
  22.  
    1. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr Suppl450, 76-85, 10.1111/j.1651-2227.2006.tb02378.x (2006) - PubMed
  23.  
    1. Fattahi Z, et al. Iranome: A catalog of genomic variations in the Iranian population. Hum. Mutat. 2019;40:1968–1984. doi: 10.1002/humu.23880. - DOI - PubMed
  24.  
    1. Doddabelavangala Mruthyunjaya M, et al. Comprehensive maturity onset diabetes of the Young (MODY) gene screening in pregnant women with Diabetes in India. PLoS ONE. 2017;12:e0168656. doi: 10.1371/journal.pone.0168656. - DOI - PMC - PubMed
  25.  
    1. Hildebrand JM, et al. A family harboring an MLKL loss of function variant implicates impaired necroptosis in diabetes. Cell Death Dis. 2021;12:345. doi: 10.1038/s41419-021-03636-5. - DOI - PMC - PubMed
  26.  
    1. Wright NM, Metzger DL, Borowitz SM, Clarke WL. Permanent neonatal diabetes mellitus and pancreatic exocrine insufficiency resulting from congenital pancreatic agenesis. Am. J. Dis. Child. 1993;147:607–609. doi: 10.1001/archpedi.1993.02160300013005. - DOI - PubMed
  27.  
    1. Ellard S. Hepatocyte nuclear factor 1 alpha (HNF-1 alpha) mutations in maturity-onset diabetes of the young. Hum. Mutat. 2000;16:377–385. doi: 10.1002/1098-1004(200011)16:5<377::aid-humu1>3.0.co;2-2. - DOI - PubMed
  28.  
    1. Paradiso V, et al. Diagnostic targeted sequencing panel for hepatocellular carcinoma genomic screening. J. Mol. Diagn. 2018;20:836–848. doi: 10.1016/j.jmoldx.2018.07.003. - DOI - PubMed
  29.  
    1. Codner E, et al. Glucokinase mutations in young children with hyperglycemia. Diabetes Metab. Res. Rev. 2006;22:348–355. doi: 10.1002/dmrr.622. - DOI - PubMed
  30.  
    1. Massa O, et al. High prevalence of glucokinase mutations in Italian children with MODY. Influence on glucose tolerance, first-phase insulin response, insulin sensitivity and BMI. Diabetologia. 2001;44:898–905. doi: 10.1007/s001250100530. - DOI - PubMed
  31.  
    1. 40(th) EASD Annual Meeting of the European Association for the Study of Diabetes: Munich, Germany, 5–9 September 2004. Diabetologia47, A1-a464, 10.1007/bf03375463 (2004). - PMC - PubMed
  32.  
    1. Shaltout AA, et al. Further evidence for the rising incidence of childhood Type 1 diabetes in Kuwait. Diabet. Med. 2002;19:522–525. doi: 10.1046/j.1464-5491.2002.00703.x. - DOI - PubMed
  33.  
    1. Shaltout AA, et al. High incidence of childhood-onset IDDM in Kuwait. Kuwait Study Group of Diabetes in Childhood. Diabetes Care. 1995;18:923–927. doi: 10.2337/diacare.18.7.923. - DOI - PubMed
  34.  
    1. Bener A, Yousafzai MT, Al-Hamaq AO, Mohammad AG, Defronzo RA. Parental transmission of type 2 diabetes mellitus in a highly endogamous population. World J. Diabetes. 2013;4:40–46. doi: 10.4239/wjd.v4.i2.40. - DOI - PMC - PubMed
  35.  
    1. Cheţa D, et al. A study on the types of diabetes mellitus in first degree relatives of diabetic patients. Diabete Metab. 1990;16:11–15. - PubMed
  36.  
    1. Alhyas L, McKay A, Majeed A. Prevalence of type 2 diabetes in the States of the co-operation council for the Arab States of the Gulf: A systematic review. PLoS ONE. 2012;7:e40948. doi: 10.1371/journal.pone.0040948. - DOI - PMC - PubMed
  37.  
    1. Elkum N, Al-Arouj M, Sharifi M, Shaltout A, Bennakhi A. Prevalence of childhood obesity in the state of Kuwait. Pediatr. Obes. 2016;11:e30–e34. doi: 10.1111/ijpo.12090. - DOI - PubMed
  38.  
    1. Małachowska B, et al. Monogenic diabetes prevalence among Polish children-Summary of 11 years-long nationwide genetic screening program. Pediatr. Diabetes. 2018;19:53–58. doi: 10.1111/pedi.12532. - DOI - PubMed
  39.  
    1. Schober E, et al. Phenotypical aspects of maturity-onset diabetes of the young (MODY diabetes) in comparison with Type 2 diabetes mellitus (T2DM) in children and adolescents: Experience from a large multicentre database. Diabet. Med. 2009;26:466–473. doi: 10.1111/j.1464-5491.2009.02720.x. - DOI - PubMed
  40.  
    1. Shields BM, et al. Maturity-onset diabetes of the young (MODY): How many cases are we missing? Diabetologia. 2010;53:2504–2508. doi: 10.1007/s00125-010-1799-4. - DOI - PubMed
  41.  
    1. Carmody D, et al. GCK-MODY in the US National Monogenic Diabetes Registry: Frequently misdiagnosed and unnecessarily treated. Acta Diabetol. 2016;53:703–708. doi: 10.1007/s00592-016-0859-8. - DOI - PMC - PubMed
  42.  
    1. Steele AM, et al. Prevalence of vascular complications among patients with glucokinase mutations and prolonged, mild hyperglycemia. JAMA. 2014;311:279–286. doi: 10.1001/jama.2013.283980. - DOI - PubMed
  43.  
    1. Chakera AJ, et al. Recognition and management of individuals with hyperglycemia because of a heterozygous glucokinase mutation. Diabetes Care. 2015;38:1383–1392. doi: 10.2337/dc14-2769. - DOI - PubMed
  44.  
    1. Murphy R, Ellard S, Hattersley AT. Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat. Clin. Pract. Endocrinol. Metab. 2008;4:200–213. doi: 10.1038/ncpendmet0778. - DOI - PubMed
  45.  
    1. Stride A, et al. Intrauterine hyperglycemia is associated with an earlier diagnosis of diabetes in HNF-1alpha gene mutation carriers. Diabetes Care. 2002;25:2287–2291. doi: 10.2337/diacare.25.12.2287. - DOI - PubMed
  46.  
    1. Edghill EL, Bingham C, Ellard S, Hattersley AT. Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J. Med. Genet. 2006;43:84–90. doi: 10.1136/jmg.2005.032854. - DOI - PMC - PubMed
  47.  
    1. Raile K, et al. Expanded clinical spectrum in hepatocyte nuclear factor 1b-maturity-onset diabetes of the young. J. Clin. Endocrinol. Metab. 2009;94:2658–2664. doi: 10.1210/jc.2008-2189. - DOI - PubMed
  48.  
    1. Amendola LM, et al. Performance of ACMG-AMP variant-interpretation guidelines among nine laboratories in the clinical sequencing exploratory research consortium. Am. J. Hum. Genet. 2016;98:1067–1076. doi: 10.1016/j.ajhg.2016.03.024. - DOI - PMC - PubMed