Urocortin Neuropeptide Levels Are Impaired in the PBMCs of Overweight Children

Affiliations

18 January 2022

-

doi: 10.3390/nu14030429


Abstract

The corticotropin-releasing hormone (CRH) and urocortins (UCNs) have been implicated in energy homeostasis and the cellular stress response. However, the expression of these neuropeptides in children remains unclear. Therefore, we determined the impact of obesity on their expression in 40 children who were normal weight, overweight, and had obesity. Peripheral blood mononuclear cells (PBMCs) and plasma were used to assess the expression of neuropeptides. THP1 cells were treated with 25 mM glucose and 200 µM palmitate, and gene expression was measured by real-time polymerase chain reaction (RT-PCR). Transcript levels of neuropeptides were decreased in PBMCs from children with increased body mass index as indicated by a significant decrease in UCN1, UCN3, and CRH mRNA in overweight and obese children. UCN3 mRNA expression was strongly correlated with UCN1, UCN2, and CRH. Exposure of THP1 cells to palmitate or a combination of high glucose and palmitate for 24 h increased CRH, UCN2, and UCN3 mRNA expression with concomitant increased levels of inflammatory and endoplasmic reticulum stress markers, suggesting a crosstalk between these neuropeptides and the cellular stress response. The differential impairment of the transcript levels of CRH and UCNs in PBMCs from overweight and obese children highlights their involvement in obesity-related metabolic and cellular stress.

Keywords: CRH; UCN3; children; obesity; urocortin.

Conflict of interest statement

The authors declare no conflict of interest.


Figures


Similar articles

Circulating levels of urocortin neuropeptides are impaired in children with overweight.

Kavalakatt S, Khadir A, Madhu D, Devarajan S, Warsame S, AlKandari H, AlMahdi M, Koistinen HA, Al-Mulla F, Tuomilehto J, Abubaker J, Tiss A.Obesity (Silver Spring). 2022 Feb;30(2):472-481. doi: 10.1002/oby.23356.PMID: 35088550 Free PMC article.

Differential stress response in rats subjected to chronic mild stress is accompanied by changes in CRH-family gene expression at the pituitary level.

Kolasa M, Faron-Górecka A, Kuśmider M, Szafran-Pilch K, Solich J, Żurawek D, Gruca P, Papp M, Dziedzicka-Wasylewska M.Peptides. 2014 Nov;61:98-106. doi: 10.1016/j.peptides.2014.09.008. Epub 2014 Sep 16.PMID: 25236411

Hypoxia and preeclampsia: increased expression of urocortin 2 and urocortin 3.

Imperatore A, Rolfo A, Petraglia F, Challis JR, Caniggia I.Reprod Sci. 2010 Sep;17(9):833-43. doi: 10.1177/1933719110373147. Epub 2010 Jul 8.PMID: 20616367

Urocortins in the mammalian endocrine system.

Squillacioti C, Pelagalli A, Liguori G, Mirabella N.Acta Vet Scand. 2019 Oct 4;61(1):46. doi: 10.1186/s13028-019-0480-2.PMID: 31585551 Free PMC article. Review.

The role of urocortins in the cardiovascular system.

Walczewska J, Dzieza-Grudnik A, Siga O, Grodzicki T.J Physiol Pharmacol. 2014 Dec;65(6):753-66.PMID: 25554979 Review.


KMEL References


References

  1.  
    1. Ogden C.L., Carroll M.D., Lawman H.G., Fryar C.D., Kruszon-Moran D., Kit B.K., Flegal K.M. Trends in Obesity Prevalence Among Children and Adolescents in the United States, 1988–1994 Through 2013–2014. JAMA. 2016;315:2292–2299. doi: 10.1001/jama.2016.6361. - DOI - PMC - PubMed
  2.  
    1. Hotamisligil G.S. Inflammation and metabolic disorders. Nature. 2006;444:860–867. doi: 10.1038/nature05485. - DOI - PubMed
  3.  
    1. Tripathi Y., Pandey V. Obesity and endoplasmic reticulum (ER) stresses. Front. Immunol. 2012;3:240. doi: 10.3389/fimmu.2012.00240. - DOI - PMC - PubMed
  4.  
    1. Fekete E.M., Zorrilla E.P. Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: Ancient CRF paralogs. Front. Neuroendocrinol. 2007;28:1–27. doi: 10.1016/j.yfrne.2006.09.002. - DOI - PMC - PubMed
  5.  
    1. Charmandari E., Tsigos C., Chrousos G. Endocrinology of the stress response. Annu. Rev. Physiol. 2005;67:259–284. doi: 10.1146/annurev.physiol.67.040403.120816. - DOI - PubMed
  6.  
    1. Roustit M.M., Vaughan J.M., Jamieson P.M., Cleasby M.E. Urocortin 3 activates AMPK and AKT pathways and enhances glucose disposal in rat skeletal muscle. J. Endocrinol. 2014;223:143–154. doi: 10.1530/JOE-14-0181. - DOI - PMC - PubMed
  7.  
    1. Dermitzaki E., Liapakis G., Androulidaki A., Venihaki M., Melissas J., Tsatsanis C., Margioris A.N. Corticotrophin-Releasing Factor (CRF) and the urocortins are potent regulators of the inflammatory phenotype of human and mouse white adipocytes and the differentiation of mouse 3T3L1 pre-adipocytes. PLoS ONE. 2014;9:e97060. doi: 10.1371/journal.pone.0097060. - DOI - PMC - PubMed
  8.  
    1. Van der Meulen T., Donaldson C.J., Caceres E., Hunter A.E., Cowing-Zitron C., Pound L.D., Adams M.W., Zembrzycki A., Grove K.L., Huising M.O. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 2015;21:769–776. doi: 10.1038/nm.3872. - DOI - PMC - PubMed
  9.  
    1. Brar B.K., Railson J., Stephanou A., Knight R.A., Latchman D.S. Urocortin increases the expression of heat shock protein 90 in rat cardiac myocytes in a MEK1/2-dependent manner. J. Endocrinol. 2002;172:283–293. doi: 10.1677/joe.0.1720283. - DOI - PubMed
  10.  
    1. Brar B.K., Jonassen A.K., Egorina E.M., Chen A., Negro A., Perrin M.H., Mjos O.D., Latchman D.S., Lee K.F., Vale W. Urocortin-II and urocortin-III are cardioprotective against ischemia reperfusion injury: An essential endogenous cardioprotective role for corticotropin releasing factor receptor type 2 in the murine heart. Endocrinology. 2004;145:24–35. doi: 10.1210/en.2003-0689. discussion 21–23. - DOI - PubMed
  11.  
    1. Tanaka C., Asakawa A., Ushikai M., Sakoguchi T., Amitani H., Terashi M., Cheng K., Chaolu H., Nakamura N., Inui A. Comparison of the anorexigenic activity of CRF family peptides. Biochem. Biophys. Res. Commun. 2009;390:887–891. doi: 10.1016/j.bbrc.2009.10.069. - DOI - PubMed
  12.  
    1. Kuperman Y., Issler O., Regev L., Musseri I., Navon I., Neufeld-Cohen A., Gil S., Chen A. Perifornical Urocortin-3 mediates the link between stress-induced anxiety and energy homeostasis. Proc. Natl. Acad. Sci. USA. 2010;107:8393–8398. doi: 10.1073/pnas.1003969107. - DOI - PMC - PubMed
  13.  
    1. Chao H., Digruccio M., Chen P., Li C. Type 2 corticotropin-releasing factor receptor in the ventromedial nucleus of hypothalamus is critical in regulating feeding and lipid metabolism in white adipose tissue. Endocrinology. 2012;153:166–176. doi: 10.1210/en.2011-1312. - DOI - PMC - PubMed
  14.  
    1. Chen A., Brar B., Choi C.S., Rousso D., Vaughan J., Kuperman Y., Kim S.N., Donaldson C., Smith S.M., Jamieson P., et al. Urocortin 2 modulates glucose utilization and insulin sensitivity in skeletal muscle. Proc. Natl. Acad. Sci. USA. 2006;103:16580–16585. doi: 10.1073/pnas.0607337103. - DOI - PMC - PubMed
  15.  
    1. Kubat E., Mahajan S., Liao M., Ackerman L., Ohara P.T., Grady E.F., Bhargava A. Corticotropin-releasing Factor Receptor 2 Mediates Sex-Specific Cellular Stress Responses. Mol. Med. 2013;19:212–222. doi: 10.2119/molmed.2013.00036. - DOI - PMC - PubMed
  16.  
    1. Gozal D., Jortani S., Snow A.B., Kheirandish-Gozal L., Bhattacharjee R., Kim J., Capdevila O.S. Two-dimensional differential in-gel electrophoresis proteomic approaches reveal urine candidate biomarkers in pediatric obstructive sleep apnea. Am. J. Respir. Crit Care Med. 2009;180:1253–1261. doi: 10.1164/rccm.200905-0765OC. - DOI - PMC - PubMed
  17.  
    1. Kavalakatt S., Khadir A., Madhu D., Hammad M., Devarajan S., Abubaker J., Al-Mulla F., Tuomilehto J., Tiss A. Urocortin 3 Levels Are Impaired in Overweight Humans With and Without Type 2 Diabetes and Modulated by Exercise. Front. Endocrinol. 2019;10:762. doi: 10.3389/fendo.2019.00762. - DOI - PMC - PubMed
  18.  
    1. Jiang Z., Michal J.J., Williams G.A., Daniels T.F., Kunej T. Cross species association examination of UCN3 and CRHR2 as potential pharmacological targets for antiobesity drugs. PLoS ONE. 2006;1:e80. doi: 10.1371/journal.pone.0000080. - DOI - PMC - PubMed
  19.  
    1. Wong M.K., Sze K.H., Chen T., Cho C.K., Law H.C., Chu I.K., Wong A.O. Goldfish spexin: Solution structure and novel function as a satiety factor in feeding control. Am. J. Physiol. Endocrinol. Metab. 2013;305:E348–E366. doi: 10.1152/ajpendo.00141.2013. - DOI - PubMed
  20.  
    1. Walewski J.L., Ge F., Lobdell H.t., Levin N., Schwartz G.J., Vasselli J.R., Pomp A., Dakin G., Berk P.D. Spexin is a novel human peptide that reduces adipocyte uptake of long chain fatty acids and causes weight loss in rodents with diet-induced obesity. Obesity. 2014;22:1643–1652. doi: 10.1002/oby.20725. - DOI - PMC - PubMed
  21.  
    1. Lv S.Y., Zhou Y.C., Zhang X.M., Chen W.D., Wang Y.D. Emerging Roles of NPQ/Spexin in Physiology and Pathology. Front. Pharmacol. 2019;10:457. doi: 10.3389/fphar.2019.00457. - DOI - PMC - PubMed
  22.  
    1. Hodges S.K., Teague A.M., Dasari P.S., Short K.R. Effect of obesity and type 2 diabetes, and glucose ingestion on circulating spexin concentration in adolescents. Pediatr. Diabetes. 2018;19:212–216. doi: 10.1111/pedi.12549. - DOI - PubMed
  23.  
    1. Khadir A., Kavalakatt S., Madhu D., Devarajan S., Abubaker J., Al-Mulla F., Tiss A. Spexin as an indicator of beneficial effects of exercise in human obesity and diabetes. Sci. Rep. 2020;10:10635. doi: 10.1038/s41598-020-67624-z. - DOI - PMC - PubMed
  24.  
    1. Priego T., Sánchez J., Picó C., Ahrens W., De Henauw S., Kourides Y., Lissner L., Molnár D., Moreno L.A., Russo P., et al. TAS1R3 and UCN2 Transcript Levels in Blood Cells Are Associated With Sugary and Fatty Food Consumption in Children. J. Clin. Endocrinol. Metab. 2015;100:3556–3564. doi: 10.1210/JC.2015-1976. - DOI - PubMed
  25.  
    1. Suda T., Kageyama K., Sakihara S., Nigawara T. Physiological roles of urocortins, human homologues of fish urotensin I, and their receptors. Peptides. 2004;25:1689–1701. doi: 10.1016/j.peptides.2004.03.027. - DOI - PubMed
  26.  
    1. Kuczmarski R.J., Ogden C.L., Guo S.S., Grummer-Strawn L.M., Flegal K.M., Mei Z., Wei R., Curtin L.R., Roche A.F., Johnson C.L. 2000 CDC Growth Charts for the United States: Methods and Development. DHSS; Hyattsville, MD, USA: 2002. pp. 1–190. Vital Health Stat Series 11, Data from the National Health survey; DHSS Publication No. (PHS)2002-1696. - PubMed
  27.  
    1. Tillinger A., Nostramo R., Kvetnansky R., Serova L., Sabban E.L. Stress-induced changes in gene expression of urocortin 2 and other CRH peptides in rat adrenal medulla: Involvement of glucocorticoids. J. Neurochem. 2013;125:185–192. doi: 10.1111/jnc.12152. - DOI - PubMed
  28.  
    1. Huising M.O., Pilbrow A.P., Matsumoto M., van der Meulen T., Park H., Vaughan J.M., Lee S., Vale W.W. Glucocorticoids differentially regulate the expression of CRFR1 and CRFR2α in MIN6 insulinoma cells and rodent islets. Endocrinology. 2011;152:138–150. doi: 10.1210/en.2010-0791. - DOI - PMC - PubMed
  29.  
    1. Kageyama K., Bradbury M.J., Zhao L., Blount A.L., Vale W.W. Urocortin messenger ribonucleic acid: Tissue distribution in the rat and regulation in thymus by lipopolysaccharide and glucocorticoids. Endocrinology. 1999;140:5651–5658. doi: 10.1210/endo.140.12.7223. - DOI - PubMed
  30.  
    1. Chen P., Hover C.V., Lindberg D., Li C. Central urocortin 3 and type 2 corticotropin-releasing factor receptor in the regulation of energy homeostasis: Critical involvement of the ventromedial hypothalamus. Front. Endocrinol. 2012;3:180. doi: 10.3389/fendo.2012.00180. - DOI - PMC - PubMed
  31.  
    1. Livingstone D.E.W., Jones G.C., Smith K., Jamieson P.M., Andrew R., Kenyon C.J., Walker B.R. Understanding the Role of Glucocorticoids in Obesity: Tissue-Specific Alterations of Corticosterone Metabolism in Obese Zucker Rats1. Endocrinology. 2000;141:560–563. doi: 10.1210/endo.141.2.7297. - DOI - PubMed
  32.  
    1. Rizza R.A., Mandarino L.J., Gerich J.E. Cortisol-induced insulin resistance in man: Impaired suppression of glucose production and stimulation of glucose utilization due to a postreceptor detect of insulin action. J. Clin. Endocrinol. Metab. 1982;54:131–138. doi: 10.1210/jcem-54-1-131. - DOI - PubMed
  33.  
    1. Alsiö J., Roman E., Olszewski P.K., Jonsson P., Fredriksson R., Levine A.S., Meyerson B.J., Hulting A.L., Lindblom J., Schiöth H.B. Inverse association of high-fat diet preference and anxiety-like behavior: A putative role for urocortin 2. Genes Brain Behav. 2009;8:193–202. doi: 10.1111/j.1601-183X.2008.00464.x. - DOI - PubMed
  34.  
    1. Cottone P., Sabino V., Nagy T.R., Coscina D.V., Levin B.E., Zorrilla E.P. Centrally administered urocortin 2 decreases gorging on high-fat diet in both diet-induced obesity-prone and -resistant rats. Int. J. Obes. 2013;37:1515–1523. doi: 10.1038/ijo.2013.22. - DOI - PMC - PubMed
  35.  
    1. Saruta M., Takahashi K., Suzuki T., Torii A., Kawakami M., Sasano H. Urocortin 1 in colonic mucosa in patients with ulcerative colitis. J. Clin. Endocrinol. Metab. 2004;89:5352–5361. doi: 10.1210/jc.2004-0195. - DOI - PubMed
  36.  
    1. Uzuki M., Sasano H., Muramatsu Y., Totsune K., Takahashi K., Oki Y., Iino K., Sawai T. Urocortin in the synovial tissue of patients with rheumatoid arthritis. Clin. Sci. 2001;100:577–589. doi: 10.1042/CS20000242. - DOI - PubMed
  37.  
    1. Kohno M., Kawahito Y., Tsubouchi Y., Hashiramoto A., Yamada R., Inoue K.I., Kusaka Y., Kubo T., Elenkov I.J., Chrousos G.P., et al. Urocortin expression in synovium of patients with rheumatoid arthritis and osteoarthritis: Relation to inflammatory activity. J. Clin. Endocrinol. Metab. 2001;86:4344–4352. doi: 10.1210/jcem.86.9.7827. - DOI - PubMed
  38.  
    1. Chatzaki E., Charalampopoulos I., Leontidis C., Mouzas I.A., Tzardi M., Tsatsanis C., Margioris A.N., Gravanis A. Urocortin in human gastric mucosa: Relationship to inflammatory activity. J. Clin. Endocrinol. Metab. 2003;88:478–483. doi: 10.1210/jc.2002-020853. - DOI - PubMed
  39.  
    1. Tsatsanis C., Androulidaki A., Dermitzaki E., Charalampopoulos I., Spiess J., Gravanis A., Margioris A.N. Urocortin 1 and Urocortin 2 induce macrophage apoptosis via CRFR2. FEBS Lett. 2005;579:4259–4264. doi: 10.1016/j.febslet.2005.06.057. - DOI - PubMed
  40.  
    1. Simpson S.J.S., Smith L.I.F., Jones P.M., Bowe J.E. UCN2: A new candidate influencing pancreatic β-cell adaptations in pregnancy. J. Endocrinol. 2020;245:247–257. doi: 10.1530/JOE-19-0568. - DOI - PMC - PubMed