Innovative design of 3D-printed nasopharyngeal pediatric swab for COVID-19 detection

Affiliations


Abstract

3-dimensional (3D) printing technology provides a solution to meet the high demand for producing adult nasal swabs. A smaller, more flexible nasopharyngeal swab needs to be developed for children and infants suspected of having coronavirus. The information shared here presents a novel 3D-printed pediatric swab for the purpose of collecting upper respiratory clinical specimens.

Keywords: COVID19; Coronavirus; Nasal swabs; Pediatric; Three-dimensional printing.

Conflict of interest statement

The authors declare that they have no competing interests.


Figures


Similar articles

On-Site, On-Demand 3D-Printed Nasopharyngeal Swabs to Improve the Access of Coronavirus Disease-19 Testing.

Song J, Korunes-Miller J, Banerji R, Wu Y, Fazeli S, Zheng H, Orr B, Morgan E, Andry C, Henderson J, Miller NS, White A, Grinstaff MW.Glob Chall. 2021 Aug 21;5(11):2100039. doi: 10.1002/gch2.202100039. eCollection 2021 Nov.PMID: 34754507 Free PMC article.

3D-printed simulator for nasopharyngeal swab collection for COVID-19.

Sananès N, Lodi M, Koch A, Lecointre L, Sananès A, Lefebvre N, Debry C.Eur Arch Otorhinolaryngol. 2021 Jul;278(7):2649-2651. doi: 10.1007/s00405-020-06454-1. Epub 2020 Nov 6.PMID: 33156390 Free PMC article.

CFD based analysis of 3D printed nasopharyngeal swabs for COVID-19 diagnostics.

Singh S, Aburashed R, Natale G.Comput Methods Programs Biomed. 2022 Aug;223:106977. doi: 10.1016/j.cmpb.2022.106977. Epub 2022 Jun 27.PMID: 35780521 Free PMC article.

Performance of three-dimensional printed nasopharyngeal swabs for COVID-19 testing.

Tooker A, Moya ML, Wang DN, Freeman D, Borucki M, Wheeler E, Larsen G, Shusteff M, Duoss EB, Spadaccini CM.MRS Bull. 2021;46(9):813-821. doi: 10.1557/s43577-021-00170-9. Epub 2021 Sep 13.PMID: 34539055 Free PMC article. Review.

Upper respiratory tract sampling in COVID-19.

Mawaddah A, Gendeh HS, Lum SG, Marina MB.Malays J Pathol. 2020 Apr;42(1):23-35.PMID: 32342928 Review.


Cited by

Translational design for limited resource settings as demonstrated by Vent-Lock, a 3D-printed ventilator multiplexer.

Xun H, Shallal C, Unger J, Tao R, Torres A, Vladimirov M, Frye J, Singhala M, Horne B, Kim BS, Burke B, Montana M, Talcott M, Winters B, Frisella M, Kushner BS, Sacks JM, Guest JK, Kang SH, Caffrey J.3D Print Med. 2022 Sep 14;8(1):29. doi: 10.1186/s41205-022-00148-6.PMID: 36102998 Free PMC article.


KMEL References


References

  1.  
    1. MacKenzie JS, Smith DW. COVID-19: A novel zoonotic disease caused by a coronavirus from China: What we know and what we don’t. Microbiol Aust. 2020;41:45–50. doi: 10.1071/MA20013. - DOI - PMC - PubMed
  2.  
    1. Timeline. WHO’s COVID-19 response [Internet]. World Health Organization. World Health Organization; 2020. [cited 2020 September 1]. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/interact....
  3.  
    1. Ranney ML, Griffeth V, Jha AK. Critical Supply Shortages- The Need for Ventilators and Personal Protective Equipment during the Covid-19 Pandemic. N Engl J Med 2020;382(18):e41. 10.1056/nejmp2006141. - PubMed
  4.  
    1. Tino R, Moore R, Antoline S, Wake N, et al. COVID-19 and the role of 3D printing in medicine. 3D Print Med. 2020;6(1):11. doi: 10.1186/s41205-020-00064-7. - DOI - PMC - PubMed
  5.  
    1. Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology:aA review. Clin Immunol. 2020;215:108427. doi: 10.1016/j.clim.2020.108427. - DOI - PMC - PubMed
  6.  
    1. Lee P-I, Hu Y-L, Chen P-Y, Huang Y-C, Hsueh P-R. Are children less susceptible to COVID-19? J Microbiol Immunol Infect. 2020;53:371–2. doi: 10.1016/j.jmii.2020.02.011. - DOI - PMC - PubMed
  7.  
    1. Mark EG, Golden WC, Gilmore MM, Sick-Samuels A, Curless MS, et al. Community-onset severe acute respiratory syndrome Coronavirus 2 infection in young infants: a systematic review. J Pediatr. 2021;228:94–100.e3. doi: 10.1016/j.jpeds.2020.09.008. - DOI - PMC - PubMed
  8.  
    1. Zimmermann P, Curtis N. Coronavirus infections in children including COVID-19: an overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children. Pediatr Infect Dis J. 2020;39:355–68. doi: 10.1097/INF.0000000000002660. - DOI - PMC - PubMed
  9.  
    1. Alsharrah D, Alhaddad F, Alyaseen M, Aljamaan S, Almutairi N, et al. Clinical characteristics of pediatric SARS-CoV-2 infection and coronavirus disease 2019 (COVID-19) in Kuwait. J Med Virol. 2020;93(5):3246–3250. doi: 10.1002/jmv.26684. - DOI - PMC - PubMed
  10.  
    1. Derespina KR, Kaushik S, Plichta A, Conway EE, Bercow A, et al. Clinical manifestations and outcomes of critically ill children and adolescents with Coronavirus disease 2019 in New York City. J Pediatr. 2020;226:55–63.e2. doi: 10.1016/j.jpeds.2020.07.039. - DOI - PMC - PubMed
  11.  
    1. Shekerdemian LS, Mahmood NR, Wolfe KK, Riggs BJ, Ross CE, et al. Characteristics and outcomes of children with coronavirus disease 2019 (COVID-19) infection admitted to US and Canadian pediatric intensive care units. JAMA Pediatr. 2020;174:868–873. doi: 10.1001/jamapediatrics.2020.1948. - DOI - PMC - PubMed
  12.  
    1. Alfraij A, Bin Alamir AA, Al-Otaibi AM, Alsharrah D, Aldaithan A, et al. Characteristics and outcomes of coronavirus disease 2019 (COVID-19) in critically ill pediatric patients admitted to the intensive care unit: a multicenter retrospective cohort study. J Infect Public Health. 2021;14:193–200. doi: 10.1016/j.jiph.2020.12.010. - DOI - PMC - PubMed
  13.  
    1. Callahan CJ, Lee R, Zulauf KE, Tamburello L, Smith KP, et al. Open development and clinical validation of multiple 3D-printed nasopharyngeal collection swabs: rapid resolution of a critical covid-19 testing bottleneck. J Clin Microbiol 2020;58. 10.1101/2020.04.14.20065094. - PMC - PubMed
  14.  
    1. Ford J, Goldstein T, Trahan S, Neuwirth A, Tatoris K, et al. A 3D-printed nasopharyngeal swab for COVID-19 diagnostic testing. 3D Print Med 2020;6(1):1–7. 10.1186/s41205-020-00076-3. - PMC - PubMed
  15.  
    1. Rybicki FJ. 3D printing in medicine: COVID-19 testing with 3D printed nasopharyngeal swabs. Clin Infect Dis. 2020;19:ciaa1437. doi: 10.1093/cid/ciaa1437. - DOI - PMC - PubMed
  16.  
    1. Decker SJ, Goldstein TA, Ford JM, Teng MN, Pugliese RS, et al. 3D printed alternative to the standard synthetic flocked nasopharyngeal swabs used for COVID-19 testing. Clin Infect Dis. 2020:ciaa1366. 10.1093/cid/ciaa1366. Epub ahead of print. - PMC - PubMed
  17.  
    1. Starosolski Z, Admane P, Dunn J, Kaziny B, Huisman TAGM, et al. Design of 3D-printed nasopharyngeal swabs for children is enabled by radiologic imaging. Am J Neuroradiol. 2020;41:2345–2347. doi: 10.3174/ajnr.A6794. - DOI - PMC - PubMed
  18.  
    1. Pondaven-Letourmy S, Alvin F, Boumghit Y, Simon F. How to perform a nasopharyngeal swab in adults and children in the COVID-19 era. Eur Ann Otorhinolaryngol Head Neck Dis. 2020;137(4):325–7. doi: 10.1016/j.anorl.2020.06.001. - DOI - PMC - PubMed
  19.  
    1. Alyouha S, Almazeedi S, Alghounaim M, Al-Mutawa Y, Alsabah S. Polyester tipped 3-dimensionally printed swab that costs less than US$0.05 and can easily and rapidly be mass produced. BMJ Innov. 2020;6:262–4. doi: 10.1136/bmjinnov-2020-000483. - DOI
  20.  
    1. Gupta B, Revagade N, Hilborn J. Poly(lactic acid) fiber: an overview. Prog Polym Sci. 2007;32:455–82. doi: 10.1016/j.progpolymsci.2007.01.005. - DOI
  21.  
    1. Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid: synthesis and biomedical applications. J Appl Microbiol. 2019;127:1612–26. doi: 10.1111/jam.14290. - DOI - PubMed
  22.  
    1. Zuniga JM, Cortes A. The role of additive manufacturing and antimicrobial polymers in the COVID-19 pandemic. Expert Rev Med Devices. 2020;17:477–81. doi: 10.1080/17434440.2020.1756771. - DOI - PMC - PubMed
  23.  
    1. PLA nasopharyngeal swab for COVID-19 by Ahmada. Available online at: https://www.thingiverse.com/thing:4373981.
  24.  
    1. Bruijns BB, Tiggelaar RM, Gardeniers H. The Extraction and Recovery Efficiency of Pure DNA for Different Types of Swabs. J Forensic Sci. 2018;63:1492–9. doi: 10.1111/1556-4029.13837. - DOI - PubMed
  25.  
    1. Khare R, Grys TE. Specimen requirements selection, collection, transport, and processing. Clin Virol Manual. 2016;57–77. 10.1128/9781555819156.ch6.
  26.  
    1. Alghounaim M, Almazeedi S, Youha S, Al, Papenburg J, Alowaish O, et al. Low-cost polyester-tipped three-dimensionally printed nasopharyngeal swab for the diagnosis of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) J Clin Microbiol. 2020;58:1–24. doi: 10.1128/JCM.01668-20. - DOI - PMC - PubMed
  27.  
    1. Nair P, Sreenivasan K, Jayabalan M. Multiple gamma radiation sterilization of polyester fibres. Biomaterials. 1988;9(4):335–8. doi: 10.1016/0142-9612(88)90029-4. - DOI - PubMed
  28.  
    1. Düzyer Ş, Koral Koc S, Hockenberger A, Evke E, Kahveci Z, et al. Effects of different sterilization methods on polyester surfaces. Tekstil ve Konfeksiyon. 2013;23(4):319–324.
  29.  
    1. Preparation of Viral Transport Medium (SOP#: DSR-052-03). CDC. Centers for Disease Control and Prevention. 2020. Available online at: https://www.cdc.gov/coronavirus/2019-ncov/downloads/Viral-Transport-Medi....
  30.  
    1. Interim Guidelines for Clinical Specimens for COVID-19. CDC. Centers for Disease Control and Prevention. 2021. Available online at: https://www.cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specim....
  31.  
    1. Guidelines for the collection of clinical specimens during field investigation of outbreaks. World Health Organization; 2000. Available online at: https://apps.who.int/iris/handle/10665/66348.