Type 2 inflammation in asthma and other airway diseases

Affiliations


Abstract

Chronic inflammatory airway diseases, including asthma, chronic rhinosinusitis, eosinophilic COPD and allergic rhinitis are a global health concern. Despite the coexistence of these diseases and their common pathophysiology, they are often managed independently, resulting in poor asthma control, continued symptoms and poor quality of life. Understanding disease pathophysiology is important for best treatment practice, reduced disease burden and improved patient outcomes. The pathophysiology of type 2 inflammation is driven by both the innate immune system triggered by pollutants, viral or fungal infections involving type 2 innate lymphoid cells (ILC2) and the adaptive immune system, triggered by contact with an allergen involving type 2 T-helper (Th2) cells. Both ILC2 and Th2 cells produce the type-2 cytokines (interleukin (IL)-4, IL-5 and IL-13), each with several roles in the inflammation cascade. IL-4 and IL-13 cause B-cell class switching and IgE production, release of pro-inflammatory mediators, barrier disruption and tissue remodelling. In addition, IL-13 causes goblet-cell hyperplasia and mucus production. All three interleukins are involved in trafficking eosinophils to tissues, producing clinical symptoms characteristic of chronic inflammatory airway diseases. Asthma is a heterogenous disease; therefore, identification of biomarkers and early targeted treatment is critical for patients inadequately managed by inhaled corticosteroids and long-acting β-agonists alone. The Global Initiative for Asthma guidelines recommend add-on biological (anti IgE, IL-5/5R, IL-4R) treatments for those not responding to standard of care. Targeted therapies, including omalizumab, mepolizumab, reslizumab, benralizumab, dupilumab and tezepelumab, were developed on current understanding of the pathophysiology of type 2 inflammation. These therapies offer hope for improved management of type 2 inflammatory airway diseases.

Conflict of interest statement

Conflict of interest: J. Maspero reports grants and personal fees from AstraZeneca, MSD, Novartis, and Sanofi, personal fees from Uriach and Inmunotek, and grants and nonfinancial support from GSK. Conflict of interest: Y. Adir reports personal fees from Teva and Sanofi, and grants and personal fees from GSK and AstraZeneca. Conflict of interest: M. Al-Ahmad has nothing to disclose. Conflict of interest: C. Celis-Preciado reports grants and personal fees from AstraZeneca and GSK, grants from Boehringer, and personal fees from Novartis and Sanofi. Conflict of interest: F.D. Colodenco has nothing to disclose. Conflict of interest: P. Giavina-Bianchi has nothing to disclose. Conflict of interest: H. Lababidi has nothing to disclose. Conflict of interest: O. Ledanois is an employee of Sanofi. Conflict of interest: B. Mahoub has nothing to disclose. Conflict of interest: D-W. Perng has nothing to disclose. Conflict of interest: J.C. Vazquez reports personal fees from AstraZeneca, Boehringer Ingelheim and Sanofi. Conflict of interest: A. Yorgancioglu reports grants/research support from AstraZeneca, MSD, and Sanofi; honoraria/consultation fees from Abdi İbrahim, AstraZeneca, Chiesi, DEVA, GSK, Novartis Sandoz and Sanofi; and other support from ERS, GARD, GINA, Turkish MoH and WHO.


References

 

  1. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. 2019. https://ginasthma.org/wp-content/uploads/2019/06/GINA-2019-main-report-J.... Date last accessed: January 2021.
  2. Fokkens WJ, Lund VJ, Hopkins C, et al. . European position paper on rhinosinusitis and nasal polyps 2020. Rhinology 2020; 58: Suppl. S29, 1–464. doi:10.4193/Rhin20.600 - DOI - PubMed
  3. Schleimer RP. Immunopathogenesis of chronic rhinosinusitis and nasal polyposis. Annu Rev Pathol 2017; 12: 331–357. doi:10.1146/annurev-pathol-052016-100401 - DOI - PMC - PubMed
  4. Pinart M, Benet M, Annesi-Maesano I, et al. . Comorbidity of eczema, rhinitis, and asthma in IgE-sensitised and non-IgE-sensitised children in MeDALL: a population-based cohort study. Lancet Respir Med 2014; 2: 131–140. doi:10.1016/S2213-2600(13)70277-7 - DOI - PubMed
  5. Lee LK, Obi E, Paknis B, et al. . Asthma control and disease burden in patients with asthma and allergic comorbidities. J Asthma 2018; 55: 208–219. doi:10.1080/02770903.2017.1316394 - DOI - PubMed
  6. Porsbjerg C, Menzies-Gow A. Co-morbidities in severe asthma: clinical impact and management. Respirology 2017; 22: 651–661. doi:10.1111/resp.13026 - DOI - PubMed
  7. Kauppi P, Linna M, Jantunen J, et al. . Chronic comorbidities contribute to the burden and costs of persistent asthma. Mediators Inflamm 2015; 2015: 819194. doi:10.1155/2015/819194 - DOI - PMC - PubMed
  8. Godard P, Chanez P, Siraudin L, et al. . Costs of asthma are correlated with severity: a 1-yr prospective study. Eur Respir J 2002; 19: 61–67. doi:10.1183/09031936.02.00232001 - DOI - PubMed
  9. Hernandez G, Dima AL, Pont A, et al. . Impact of asthma on women and men: comparison with the general population using the EQ-5D-5L questionnaire. PLoS One 2018; 13: e0202624. doi:10.1371/journal.pone.0202624 - DOI - PMC - PubMed
  10. Kim KH, Jahan SA, Kabir E. A review on human health perspective of air pollution with respect to allergies and asthma. Environ Int 2013; 59: 41–52. doi:10.1016/j.envint.2013.05.007 - DOI - PubMed
  11. Ali FR. Does this patient have atopic asthma? Clin Med 2011; 11: 376–380. - PMC - PubMed
  12. Adams OJ, von Gunten S. Recent advances in experimental allergy. Int Arch Allergy Immunol 2018; 177: 281–289. doi:10.1159/000494440 - DOI - PubMed
  13. Center for Disease Control . Most Recent Asthma Data. www.cdc.gov/asthma/most_recent_data.htm/ Date last accessed: January 2021.
  14. Hastan D, Fokkens WJ, Bachert C, et al. . Chronic rhinosinusitis in Europe – an underestimated disease. A GA2LEN study. Allergy 2011; 66: 1216–1223. doi:10.1111/j.1398-9995.2011.02646.x - DOI - PubMed
  15. GBD 2016 Disease and Injury Incidence and Prevalence Collaborators . Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017; 390: 1211–1259. doi:10.1016/S0140-6736(17)32154-2 - DOI - PMC - PubMed
  16. Fokkens WJ, Lund V, Bachert C, et al. . EUFOREA consensus on biologics for CRSwNP with or without asthma. Allergy 2019; 74: 2312–2319. doi:10.1111/all.13875 - DOI - PMC - PubMed
  17. Casanova C, Celli BR, de-Torres JP, et al. . Prevalence of persistent blood eosinophilia: relation to outcomes in patients with COPD. Eur Respir J 2017; 50: 1701162. doi:10.1183/13993003.01162-2017 - DOI - PubMed
  18. Singh D, Kolsum U, Brightling CE, et al. . Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur Respir J 2014; 44: 1697–1700. doi:10.1183/09031936.00162414 - DOI - PubMed
  19. European Academy of Allergy and Clinical Immunology (EAACI) . EAACI Global Atlas of Allergic Rhinitis and Chronic Rhinosinusitis. 2015. Available from: https://medialibrary.eaaci.org/mediatheque/media.aspx?mediaId=60232&chan…
  20. Corren J, Lemanske RF, Hanania NA, et al. . Lebrikizumab treatment in adults with asthma. N Engl J Med 2011; 365: 1088–1098. doi:10.1056/NEJMoa1106469 - DOI - PubMed
  21. Schleich F, Brusselle G, Louis R, et al. . Heterogeneity of phenotypes in severe asthmatics. The Belgian Severe Asthma Registry (BSAR). Respir Med 2014; 108: 1723–1732. doi:10.1016/j.rmed.2014.10.007 - DOI - PubMed
  22. Peters MC, Mekonnen ZK, Yuan S, et al. . Measures of gene expression in sputum cells can identify TH2-high and TH2-low subtypes of asthma. J Allergy Clin Immunol 2014; 133: 388–394. doi:10.1016/j.jaci.2013.07.036 - DOI - PMC - PubMed
  23. Kim DW, Cho SH. Emerging endotypes of chronic rhinosinusitis and its application to precision medicine. Allergy Asthma Immunol Res 2017; 9: 299–306. doi:10.4168/aair.2017.9.4.299 - DOI - PMC - PubMed
  24. Bachert C, Pawankar R, Zhang L, et al. . ICON: chronic rhinosinusitis. World Allergy Organ J 2014; 7: 25. doi:10.1186/1939-4551-7-25 - DOI - PMC - PubMed
  25. Delemarre T, Holtappels G, De Ruyck N, et al. . Type 2 inflammation in chronic rhinosinusitis without nasal polyps: another relevant endotype. J Allergy Clin Immunol 2020; 146: 337–343. doi:10.1016/j.jaci.2020.04.040 - DOI - PubMed
  26. Khan A, Vandeplas G, Huynh TMT, et al. . The Global Allergy and Asthma European Network (GALEN) rhinosinusitis cohort: a large European cross-sectional study of chronic rhinosinusitis patients with and without nasal polyps. Rhinology 2019; 57: 32–42. doi:10.4193/Rhin17.255 - DOI - PubMed
  27. Bousquet J, Khaltaev N, Cruz AA, et al. . Allergic Rhinitis and its Impact on Asthma (ARIA) 2008 update (in collaboration with the World Health Organization, GA2LEN and AllerGen). Allergy 2008; 63: Suppl. 86, 8–160. doi:10.1111/j.1398-9995.2007.01620.x - DOI - PubMed
  28. Mindus S, Malinovschi A, Ekerljung L, et al. . Asthma and COPD overlap (ACO) is related to a high burden of sleep disturbance and respiratory symptoms: results from the RHINE and Swedish GA2LEN surveys. PLoS One 2018; 13: e0195055. doi:10.1371/journal.pone.0195055 - DOI - PMC - PubMed
  29. White AA, Stevenson DD. Aspirin-exacerbated respiratory disease. N Engl J Med 2018; 379: 1060–1070. doi:10.1056/NEJMra1712125 - DOI - PubMed
  30. Shaw DE, Sousa AR, Fowler SJ, et al. . Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort. Eur Respir J 2015; 46: 1308–1321. doi:10.1183/13993003.00779-2015 - DOI - PubMed
  31. Gandhi NA, Bennett BL, Graham NM, et al. . Targeting key proximal drivers of type 2 inflammation in disease. Nat Rev Drug Discov 2016; 15: 35–50. doi:10.1038/nrd4624 - DOI - PubMed
  32. Heffler E, Blasi F, Latorre M, et al. . The Severe Asthma Network in Italy: findings and perspectives. J Allergy Clin Immunol Pract 2019; 7: 1462–1468. doi:10.1016/j.jaip.2018.10.016 - DOI - PubMed
  33. Maio S, Baldacci S, Bresciani M, et al. . RItA: the Italian severe/uncontrolled asthma registry. Allergy 2018; 73: 683–695. doi:10.1111/all.13342 - DOI - PubMed
  34. Micheletto C, Visconti M, Trevisan F, et al. . The prevalence of nasal polyps and the corresponding urinary LTE4 levels in severe compared to mild and moderate asthma. Eur Ann Allergy Clin Immunol 2010; 42: 120–124. - PubMed
  35. Miravitlles M, Alvarez-Gutierrez FJ, Calle M, et al. . Algorithm for identification of asthma-COPD overlap: consensus between the Spanish COPD and asthma guidelines. Eur Respir J 2017; 49: 1700068. doi:10.1183/13993003.00068-2017 - DOI - PubMed
  36. Toledo-Pons N, van Boven JFM, Roman-Rodríguez M, et al. . ACO: time to move from the description of different phenotypes to the treatable traits. PLoS One 2019; 14: e0210915. doi:10.1371/journal.pone.0210915 - DOI - PMC - PubMed
  37. Licari A, Castagnoli R, Denicolò CF, et al. . The nose and the lung: united airway disease? Front Pediatr 2017; 5: 44. doi:10.3389/fped.2017.00044 - DOI - PMC - PubMed
  38. Sahay S, Gera K, Bhargava SK, et al. . Occurrence and impact of sinusitis in patients with asthma and/or allergic rhinitis. J Asthma 2016; 53: 635–643. doi:10.3109/02770903.2015.1091005 - DOI - PubMed
  39. Jackson D, Aljamil N, Roxas C, et al. . The ‘T2-low’ asthma phenotype: could it just be T2-high asthma treated with corticosteroids? Thorax 2018; 73: A124–A125. doi:10.1136/thorax-2018-212555.206 - DOI
  40. Kato A, Klingler AI, Stevens WW, et al. . Heterogenous inflammation in chronic rhinosinusitis without nasal polyps. J Allergy Clin Immunol 2016; 137: AB285. doi:10.1016/j.jaci.2015.12.1180 - DOI
  41. Global Initiative for Chronic Obstructive Lung Disease (GOLD) . Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2019. https://goldcopd.org/wp-content/uploads/2018/11/GOLD-2019-v1.7-FINAL-14N... Date last accessed: January 2021.
  42. Håkansson K, Konge L, Thomsen SF, et al. . Sinonasal inflammation in COPD: a systematic review. Eur Respir J 2013; 42: 1402–1411. doi:10.1183/09031936.00119712 - DOI - PubMed
  43. Øie MR, Dahlslett SB, Sue-Chu M, et al. . Rhinosinusitis without nasal polyps in COPD. ERJ Open Res 2020; 6: 00015-2020. doi:10.1183/23120541.00015-2020 - DOI - PMC - PubMed
  44. Dean BB, Calimlim BM, Kindermann SL, et al. . The impact of uncontrolled asthma on absenteeism and health-related quality of life. J Asthma 2009; 46: 861–866. doi:10.3109/02770900903184237 - DOI - PubMed
  45. Sanz de Burgoa V, Rejas J. Self-perceived sleep quality and quantity in adults with asthma: findings from the CosteAsma study. J Investig Allergol Clin Immunol 2016; 26: 256–262. doi:10.18176/jiaci.0044 - DOI - PubMed
  46. Serrano E, Neukirch F, Pribil C, et al. . Nasal polyposis in France: impact on sleep and quality of life. J Laryngol Otol 2005; 119: 543–549. doi:10.1258/0022215054352108 - DOI - PubMed
  47. Radenne F, Lamblin C, Vandezande LM, et al. . Quality of life in nasal polyposis. J Allergy Clin Immunol 1999; 104: 79–84. doi:10.1016/S0091-6749(99)70117-X - DOI - PubMed
  48. Price D, Fletcher M, van der Molen T. Asthma control and management in 8,000 European patients: the REcognise Asthma and LInk to Symptoms and Experience (REALISE) survey. NPJ Prim Care Respir Med 2014; 24: 14009. doi:10.1038/npjpcrm.2014.9 - DOI - PMC - PubMed
  49. Sullivan PW, Ghushchyan VH, Globe G, et al. . Oral corticosteroid exposure and adverse effects in asthmatic patients. J Allergy Clin Immunol 2018; 141: 110–116. doi:10.1016/j.jaci.2017.04.009 - DOI - PubMed
  50. Boulet LP. Influence of comorbid conditions on asthma. Eur Respir J 2009; 33: 897–906. doi:10.1183/09031936.00121308 - DOI - PubMed