Proteomic analysis of the periodontal pathogen Prevotella intermedia secretomes in biofilm and planktonic lifestyles

Affiliations


Abstract

Prevotella intermedia is an important species associated with periodontitis. Despite the remarkable clinical significance, little is known about the molecular basis for its virulence. The aim of this study was to characterize the secretome of P. intermedia in biofilm and planktonic life mode. The biofilm secretome showed 109 proteins while the planktonic secretome showed 136 proteins. The biofilm and the planktonic secretomes contained 17 and 33 signal-peptide bearing proteins, 13 and 18 lipoproteins, respectively. Superoxide reductase, sensor histidine kinase, C40 family peptidase, elongation factor Tu, threonine synthase etc. were unique to biofilm. Of the ~ 30 proteins with predicted virulence potential from biofilm and planktonic secretomes, only 6 were common between the two groups, implying large differences between biofilm and planktonic modes of P. intermedia. From Gene Ontology biofilm secretome displayed a markedly higher percent proteins compared to planktonic secretome in terms of cellular amino acid metabolic process, nitrogen compound metabolic process etc. Inflammatory cytokine profile analysis revealed that only the biofilm secretome, not the planktonic one, induced important cytokines such as MIP-1α/MIP-1β, IL-1β, and IL-8. In conclusion, the revealed differences in the protein profiles of P. intermedia biofilm and planktonic secretomes may trigger further questions about molecular mechanisms how this species exerts its virulence potential in the oral cavity.

Conflict of interest statement

The authors declare no competing interests.


Figures


Similar articles

Quantitation of biofilm and planktonic life forms of coexisting periodontal species.

Karched M, Bhardwaj RG, Inbamani A, Asikainen S.Anaerobe. 2015 Oct;35(Pt A):13-20. doi: 10.1016/j.anaerobe.2015.04.013. Epub 2015 Apr 26.PMID: 25926392

Effect of estradiol on planktonic growth, coaggregation, and biofilm formation of the Prevotella intermedia group bacteria.

Fteita D, Könönen E, Söderling E, Gürsoy UK.Anaerobe. 2014 Jun;27:7-13. doi: 10.1016/j.anaerobe.2014.02.003. Epub 2014 Mar 1.PMID: 24594108

In Vitro Effects of Polyphosphate against Prevotella intermedia in Planktonic Phase and Biofilm.

Jang EY, Kim M, Noh MH, Moon JH, Lee JY.Antimicrob Agents Chemother. 2015 Nov 23;60(2):818-26. doi: 10.1128/AAC.01861-15. Print 2016 Feb.PMID: 26596937 Free PMC article.

Prevotella species as oral residents and infectious agents with potential impact on systemic conditions.

Könönen E, Fteita D, Gursoy UK, Gursoy M.J Oral Microbiol. 2022 May 26;14(1):2079814. doi: 10.1080/20002297.2022.2079814. eCollection 2022.PMID: 36393976 Free PMC article. Review.

Insights into the virulence of oral biofilms: discoveries from proteomics.

Kuboniwa M, Tribble GD, Hendrickson EL, Amano A, Lamont RJ, Hackett M.Expert Rev Proteomics. 2012 Jun;9(3):311-23. doi: 10.1586/epr.12.16.PMID: 22809209 Free PMC article. Review.


Cited by

Proteomic profiling spotlights the molecular targets and the impact of the natural antivirulent umbelliferone on stress response, virulence factors, and the quorum sensing network of Pseudomonas aeruginosa.

Kasthuri T, Barath S, Nandhakumar M, Karutha Pandian S.Front Cell Infect Microbiol. 2022 Nov 30;12:998540. doi: 10.3389/fcimb.2022.998540. eCollection 2022.PMID: 36530435 Free PMC article.

Enrichment of Prevotella intermedia in human colorectal cancer and its additive effects with Fusobacterium nucleatum on the malignant transformation of colorectal adenomas.

Lo CH, Wu DC, Jao SW, Wu CC, Lin CY, Chuang CH, Lin YB, Chen CH, Chen YT, Chen JH, Hsiao KH, Chen YJ, Chen YT, Wang JY, Li LH.J Biomed Sci. 2022 Oct 27;29(1):88. doi: 10.1186/s12929-022-00869-0.PMID: 36303164 Free PMC article.


KMEL References


References

  1.  
    1. Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 1997;61:136–169. - PMC - PubMed
  2.  
    1. Lee VT, Schneewind O. Protein secretion and the pathogenesis of bacterial infections. Genes Dev. 2001;15:1725–1752. doi: 10.1101/gad.896801. - DOI - PubMed
  3.  
    1. Green, E. R. & Mecsas, J. Bacterial secretion systems: An overview. Microbiol. Spectr.4. 10.1128/microbiolspec.VMBF-0012-2015 (2016). - PMC - PubMed
  4.  
    1. Natale P, Bruser T, Driessen AJ. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane–distinct translocases and mechanisms. Biochim. Biophys. Acta. 2008;1778:1735–1756. doi: 10.1016/j.bbamem.2007.07.015. - DOI - PubMed
  5.  
    1. Beveridge TJ. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 1999;181:4725–4733. doi: 10.1128/JB.181.16.4725-4733.1999. - DOI - PMC - PubMed
  6.  
    1. Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 2015;13:605–619. doi: 10.1038/nrmicro3525. - DOI - PMC - PubMed
  7.  
    1. Colombo AP, et al. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J. Periodontol. 2009;80:1421–1432. doi: 10.1902/jop.2009.090185. - DOI - PMC - PubMed
  8.  
    1. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL., Jr Microbial complexes in subgingival plaque. J. Clin. Periodontol. 1998;25:134–144. doi: 10.1111/j.1600-051X.1998.tb02419.x. - DOI - PubMed
  9.  
    1. Kolenbrander PE, Palmer RJ, Jr, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 2010;8:471–480. doi: 10.1038/nrmicro2381. - DOI - PubMed
  10.  
    1. Nadell CD, Drescher K, Foster KR. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 2016;14:589–600. doi: 10.1038/nrmicro.2016.84. - DOI - PubMed
  11.  
    1. Flemmig TF. Periodontitis. Ann. Periodontol. 1999;4:32–38. doi: 10.1902/annals.1999.4.1.32. - DOI - PubMed
  12.  
    1. Belstrom D, et al. Microbial profile comparisons of saliva, pooled and site-specific subgingival samples in periodontitis patients. PLoS ONE. 2017;12:e0182992. doi: 10.1371/journal.pone.0182992. - DOI - PMC - PubMed
  13.  
    1. Dahlen, G. et al. Subgingival bacteria in Ghanaian adolescents with or without progression of attachment loss. J. Oral. Microbiol.6, 1. 10.3402/jom.v6.23977 (2014). - PMC - PubMed
  14.  
    1. Joshi V, et al. Smoking decreases structural and functional resilience in the subgingival ecosystem. J. Clin. Periodontol. 2014;41:1037–1047. doi: 10.1111/jcpe.12300. - DOI - PubMed
  15.  
    1. Xie G, et al. Community and gene composition of a human dental plaque microbiota obtained by metagenomic sequencing. Mol. Oral. Microbiol. 2010;25:391–405. doi: 10.1111/j.2041-1014.2010.00587.x. - DOI - PMC - PubMed
  16.  
    1. Enwonwu CO, Falkler WA, Idigbe EO. Oro-facial gangrene (noma/cancrum oris): pathogenetic mechanisms. Crit. Rev. Oral Biol. Med. 2000;11:159–171. doi: 10.1177/10454411000110020201. - DOI - PubMed
  17.  
    1. Brook I, Foote PA, Slots J. Immune response to Fusobacterium nucleatum, Prevotella intermedia and other anaerobes in children with acute tonsillitis. J. Antimicrob. Chemother. 1997;39:763–769. doi: 10.1093/jac/39.6.763. - DOI - PubMed
  18.  
    1. Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J. Periodontol. 2000;71:1554–1560. doi: 10.1902/jop.2000.71.10.1554. - DOI - PubMed
  19.  
    1. Maternal infection and fetal exposure Madianos, P. N. et al. Maternal periodontitis and prematurity. Part II. Ann. Periodontol. 2001;6:175–182. doi: 10.1902/annals.2001.6.1.175. - DOI - PubMed
  20.  
    1. Andres, M. T., Chung, W. O., Roberts, M. C. & Fierro, J. F. Antimicrobial susceptibilities of Porphyromonas gingivalis, Prevotella intermedia, and Prevotella nigrescens spp. isolated in Spain. Antimicrob. Agents Chemother.42, 3022–3023. 10.1128/AAC.42.11.3022 (1998). - PMC - PubMed
  21.  
    1. Fosse T, et al. High prevalence of cfxA beta-lactamase in aminopenicillin-resistant Prevotella strains isolated from periodontal pockets. Oral. Microbiol. Immunol. 2002;17:85–88. doi: 10.1046/j.0902-0055.2001.00096.x. - DOI - PubMed
  22.  
    1. Irshad, M. et al. Characterization and antimicrobial susceptibility of pathogens associated with periodontal abscess. Antibiotics (Basel)9. 10.3390/antibiotics9100654 (2020). - PMC - PubMed
  23.  
    1. Wang Y, Zhang W, Wu Z, Lu C. Reduced virulence is an important characteristic of biofilm infection of Streptococcus suis. FEMS Microbiol. Lett. 2011;316:36–43. doi: 10.1111/j.1574-6968.2010.02189.x. - DOI - PubMed
  24.  
    1. Cianciotto NP. Type II secretion: A protein secretion system for all seasons. Trends Microbiol. 2005;13:581–588. doi: 10.1016/j.tim.2005.09.005. - DOI - PubMed
  25.  
    1. Filloux A. The underlying mechanisms of type II protein secretion. Biochim. Biophys. Acta. 2004;1694:163–179. doi: 10.1016/j.bbamcr.2004.05.003. - DOI - PubMed
  26.  
    1. Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontol. 2021;2000(86):32–56. doi: 10.1111/prd.12361. - DOI - PubMed
  27.  
    1. Terrasse R, Amoroso A, Vernet T, Di Guilmi AM. Streptococcus pneumoniae GAPDH is released by cell lysis and interacts with peptidoglycan. PLoS ONE. 2015;10:e0125377. doi: 10.1371/journal.pone.0125377. - DOI - PMC - PubMed
  28.  
    1. Bem AE, et al. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem. Biol. 2015;10:213–224. doi: 10.1021/cb5007135. - DOI - PubMed
  29.  
    1. Hiratsuka K, Kiyama-Kishikawa M, Abiko Y. Hemin-binding protein 35 (HBP35) plays an important role in bacteria-mammalian cells interactions in Porphyromonas gingivalis. Microb. Pathog. 2010;48:116–123. doi: 10.1016/j.micpath.2010.01.001. - DOI - PubMed
  30.  
    1. Rainey, K., Michalek, S. M., Wen, Z. T. & Wu, H. Glycosyltransferase-mediated biofilm matrix dynamics and virulence of Streptococcus mutans. Appl. Environ. Microbiol.85. 10.1128/AEM.02247-18 (2019). - PMC - PubMed
  31.  
    1. Ge X, et al. Involvement of NADH oxidase in biofilm formation in Streptococcus sanguinis. PLoS ONE. 2016;11:e0151142. doi: 10.1371/journal.pone.0151142. - DOI - PMC - PubMed
  32.  
    1. Bjur E, Eriksson-Ygberg S, Aslund F, Rhen M. Thioredoxin 1 promotes intracellular replication and virulence of Salmonella enterica serovar Typhimurium. Infect. Immun. 2006;74:5140–5151. doi: 10.1128/iai.00449-06. - DOI - PMC - PubMed
  33.  
    1. Kumagai Y, Yajima A, Konishi K. Peptidase activity of dipeptidyl aminopeptidase IV produced by Porphyromonas gingivalis is important but not sufficient for virulence. Microbiol. Immunol. 2003;47:735–743. doi: 10.1111/j.1348-0421.2003.tb03443.x. - DOI - PubMed
  34.  
    1. Kadri R, Devine D, Ashraf W. Purification and functional analysis of the DnaK homologue from Prevotella intermedia OMZ 326. FEMS Microbiol. Lett. 1998;167:63–68. doi: 10.1111/j.1574-6968.1998.tb13208.x. - DOI - PubMed
  35.  
    1. Santos SG, et al. Differentially regulated proteins in Prevotella intermedia after oxidative stress analyzed by 2D electrophoresis and mass spectrometry. Anaerobe. 2012;18:76–82. doi: 10.1016/j.anaerobe.2011.12.008. - DOI - PubMed
  36.  
    1. Guan SM, et al. Prevotella intermedia upregulates MMP-1 and MMP-8 expression in human periodontal ligament cells. FEMS Microbiol. Lett. 2009;299:214–222. doi: 10.1111/j.1574-6968.2009.01748.x. - DOI - PubMed
  37.  
    1. Kim SJ, et al. Prevotella intermedia lipopolysaccharide stimulates release of tumor necrosis factor-alpha through mitogen-activated protein kinase signaling pathways in monocyte-derived macrophages. FEMS Immunol. Med. Microbiol. 2007;51:407–413. doi: 10.1111/j.1574-695X.2007.00318.x. - DOI - PubMed
  38.  
    1. Nath A, Chattopadhya S, Chattopadhyay U, Sharma NK. Macrophage inflammatory protein (MIP)1alpha and MIP1beta differentially regulate release of inflammatory cytokines and generation of tumoricidal monocytes in malignancy. Cancer Immunol. Immunother. 2006;55:1534–1541. doi: 10.1007/s00262-006-0149-3. - DOI - PubMed
  39.  
    1. Caron E, Gross A, Liautard JP, Dornand J. Brucella species release a specific, protease-sensitive, inhibitor of TNF-alpha expression, active on human macrophage-like cells. J. Immunol. 1996;156:2885–2893. - PubMed
  40.  
    1. Karched M, Bhardwaj RG, Inbamani A, Asikainen S. Quantitation of biofilm and planktonic life forms of coexisting periodontal species. Anaerobe. 2015;35:13–20. doi: 10.1016/j.anaerobe.2015.04.013. - DOI - PubMed
  41.  
    1. Deatherage Kaiser, B. L. et al. Improved proteomic analysis following trichloroacetic acid extraction of Bacillus anthracis spore proteins. J. Microbiol. Methods118, 18–24. 10.1016/j.mimet.2015.08.008 (2015). - PubMed
  42.  
    1. Karched M, Bhardwaj RG, Tiss A, Asikainen S. Proteomic analysis and virulence assessment of Granulicatella adiacens secretome. Front. Cell. Infect. Microbiol. 2019;9:104. doi: 10.3389/fcimb.2019.00104. - DOI - PMC - PubMed
  43.  
    1. Alkandari SA, Bhardwaj RG, Ellepola A, Karched M. Proteomics of extracellular vesicles produced by Granulicatella adiacens, which causes infective endocarditis. PLoS ONE. 2020;15:e0227657. doi: 10.1371/journal.pone.0227657. - DOI - PMC - PubMed
  44.  
    1. Hiller K, Schobert M, Hundertmark C, Jahn D, Munch R. JVirGel: Calculation of virtual two-dimensional protein gels. Nucleic Acids Res. 2003;31:3862–3865. doi: 10.1093/nar/gkg536. - DOI - PMC - PubMed
  45.  
    1. Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics26, 1608–1615. 10.1093/bioinformatics/btq249 (2010). - PMC - PubMed
  46.  
    1. Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol.37, 420–423. 10.1038/s41587-019-0036-z (2019). - PubMed
  47.  
    1. Bagos PG, Tsirigos KD, Liakopoulos TD, Hamodrakas SJ. Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model. J. Proteome Res. 2008;7:5082–5093. doi: 10.1021/pr800162c. - DOI - PubMed
  48.  
    1. Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S. Prediction of twin-arginine signal peptides. BMC Bioinformatics. 2005;6:167. doi: 10.1186/1471-2105-6-167. - DOI - PMC - PubMed
  49.  
    1. Conesa A, et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–3676. doi: 10.1093/bioinformatics/bti610. - DOI - PubMed
  50.  
    1. Yu CS, et al. CELLO2GO: A web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS ONE. 2014;9:e99368. doi: 10.1371/journal.pone.0099368. - DOI - PMC - PubMed
  51.  
    1. von Mering C, et al. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33:D433–437. doi: 10.1093/nar/gki005. - DOI - PMC - PubMed
  52.  
    1. Garg A, Gupta D. VirulentPred: A SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformatics. 2008;9:62. doi: 10.1186/1471-2105-9-62. - DOI - PMC - PubMed