Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, PO Box 24923, 13110, Safat, Kuwait. Maribasappa.karched@ku.edu.kw.
Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, PO Box 24923, 13110, Safat, Kuwait.
Department of Developmental and Preventive Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Safat, Kuwait.
Department of Surgical Sciences, Faculty of Dentistry, Health Sciences Center, Kuwait University, Safat, Kuwait.
Prevotella intermedia is an important species associated with periodontitis. Despite the remarkable clinical significance, little is known about the molecular basis for its virulence. The aim of this study was to characterize the secretome of P. intermedia in biofilm and planktonic life mode. The biofilm secretome showed 109 proteins while the planktonic secretome showed 136 proteins. The biofilm and the planktonic secretomes contained 17 and 33 signal-peptide bearing proteins, 13 and 18 lipoproteins, respectively. Superoxide reductase, sensor histidine kinase, C40 family peptidase, elongation factor Tu, threonine synthase etc. were unique to biofilm. Of the ~ 30 proteins with predicted virulence potential from biofilm and planktonic secretomes, only 6 were common between the two groups, implying large differences between biofilm and planktonic modes of P. intermedia. From Gene Ontology biofilm secretome displayed a markedly higher percent proteins compared to planktonic secretome in terms of cellular amino acid metabolic process, nitrogen compound metabolic process etc. Inflammatory cytokine profile analysis revealed that only the biofilm secretome, not the planktonic one, induced important cytokines such as MIP-1α/MIP-1β, IL-1β, and IL-8. In conclusion, the revealed differences in the protein profiles of P. intermedia biofilm and planktonic secretomes may trigger further questions about molecular mechanisms how this species exerts its virulence potential in the oral cavity.
Jang EY, Kim M, Noh MH, Moon JH, Lee JY.Antimicrob Agents Chemother. 2015 Nov 23;60(2):818-26. doi: 10.1128/AAC.01861-15. Print 2016 Feb.PMID: 26596937 Free PMC article.
Finlay BB, Falkow S. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 1997;61:136–169. - PMC - PubMed
Lee VT, Schneewind O. Protein secretion and the pathogenesis of bacterial infections. Genes Dev. 2001;15:1725–1752. doi: 10.1101/gad.896801. - DOI - PubMed
Green, E. R. & Mecsas, J. Bacterial secretion systems: An overview. Microbiol. Spectr.4. 10.1128/microbiolspec.VMBF-0012-2015 (2016). - PMC - PubMed
Natale P, Bruser T, Driessen AJ. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane–distinct translocases and mechanisms. Biochim. Biophys. Acta. 2008;1778:1735–1756. doi: 10.1016/j.bbamem.2007.07.015. - DOI - PubMed
Beveridge TJ. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 1999;181:4725–4733. doi: 10.1128/JB.181.16.4725-4733.1999. - DOI - PMC - PubMed
Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 2015;13:605–619. doi: 10.1038/nrmicro3525. - DOI - PMC - PubMed
Colombo AP, et al. Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbe identification microarray. J. Periodontol. 2009;80:1421–1432. doi: 10.1902/jop.2009.090185. - DOI - PMC - PubMed
Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL., Jr Microbial complexes in subgingival plaque. J. Clin. Periodontol. 1998;25:134–144. doi: 10.1111/j.1600-051X.1998.tb02419.x. - DOI - PubMed
Kolenbrander PE, Palmer RJ, Jr, Periasamy S, Jakubovics NS. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 2010;8:471–480. doi: 10.1038/nrmicro2381. - DOI - PubMed
Nadell CD, Drescher K, Foster KR. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 2016;14:589–600. doi: 10.1038/nrmicro.2016.84. - DOI - PubMed
Flemmig TF. Periodontitis. Ann. Periodontol. 1999;4:32–38. doi: 10.1902/annals.1999.4.1.32. - DOI - PubMed
Belstrom D, et al. Microbial profile comparisons of saliva, pooled and site-specific subgingival samples in periodontitis patients. PLoS ONE. 2017;12:e0182992. doi: 10.1371/journal.pone.0182992. - DOI - PMC - PubMed
Dahlen, G. et al. Subgingival bacteria in Ghanaian adolescents with or without progression of attachment loss. J. Oral. Microbiol.6, 1. 10.3402/jom.v6.23977 (2014). - PMC - PubMed
Joshi V, et al. Smoking decreases structural and functional resilience in the subgingival ecosystem. J. Clin. Periodontol. 2014;41:1037–1047. doi: 10.1111/jcpe.12300. - DOI - PubMed
Xie G, et al. Community and gene composition of a human dental plaque microbiota obtained by metagenomic sequencing. Mol. Oral. Microbiol. 2010;25:391–405. doi: 10.1111/j.2041-1014.2010.00587.x. - DOI - PMC - PubMed
Brook I, Foote PA, Slots J. Immune response to Fusobacterium nucleatum, Prevotella intermedia and other anaerobes in children with acute tonsillitis. J. Antimicrob. Chemother. 1997;39:763–769. doi: 10.1093/jac/39.6.763. - DOI - PubMed
Haraszthy VI, Zambon JJ, Trevisan M, Zeid M, Genco RJ. Identification of periodontal pathogens in atheromatous plaques. J. Periodontol. 2000;71:1554–1560. doi: 10.1902/jop.2000.71.10.1554. - DOI - PubMed
Maternal infection and fetal exposure Madianos, P. N. et al. Maternal periodontitis and prematurity. Part II. Ann. Periodontol. 2001;6:175–182. doi: 10.1902/annals.2001.6.1.175. - DOI - PubMed
Andres, M. T., Chung, W. O., Roberts, M. C. & Fierro, J. F. Antimicrobial susceptibilities of Porphyromonas gingivalis, Prevotella intermedia, and Prevotella nigrescens spp. isolated in Spain. Antimicrob. Agents Chemother.42, 3022–3023. 10.1128/AAC.42.11.3022 (1998). - PMC - PubMed
Fosse T, et al. High prevalence of cfxA beta-lactamase in aminopenicillin-resistant Prevotella strains isolated from periodontal pockets. Oral. Microbiol. Immunol. 2002;17:85–88. doi: 10.1046/j.0902-0055.2001.00096.x. - DOI - PubMed
Irshad, M. et al. Characterization and antimicrobial susceptibility of pathogens associated with periodontal abscess. Antibiotics (Basel)9. 10.3390/antibiotics9100654 (2020). - PMC - PubMed
Wang Y, Zhang W, Wu Z, Lu C. Reduced virulence is an important characteristic of biofilm infection of Streptococcus suis. FEMS Microbiol. Lett. 2011;316:36–43. doi: 10.1111/j.1574-6968.2010.02189.x. - DOI - PubMed
Cianciotto NP. Type II secretion: A protein secretion system for all seasons. Trends Microbiol. 2005;13:581–588. doi: 10.1016/j.tim.2005.09.005. - DOI - PubMed
Filloux A. The underlying mechanisms of type II protein secretion. Biochim. Biophys. Acta. 2004;1694:163–179. doi: 10.1016/j.bbamcr.2004.05.003. - DOI - PubMed
Jakubovics NS, Goodman SD, Mashburn-Warren L, Stafford GP, Cieplik F. The dental plaque biofilm matrix. Periodontol. 2021;2000(86):32–56. doi: 10.1111/prd.12361. - DOI - PubMed
Terrasse R, Amoroso A, Vernet T, Di Guilmi AM. Streptococcus pneumoniae GAPDH is released by cell lysis and interacts with peptidoglycan. PLoS ONE. 2015;10:e0125377. doi: 10.1371/journal.pone.0125377. - DOI - PMC - PubMed
Bem AE, et al. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem. Biol. 2015;10:213–224. doi: 10.1021/cb5007135. - DOI - PubMed
Hiratsuka K, Kiyama-Kishikawa M, Abiko Y. Hemin-binding protein 35 (HBP35) plays an important role in bacteria-mammalian cells interactions in Porphyromonas gingivalis. Microb. Pathog. 2010;48:116–123. doi: 10.1016/j.micpath.2010.01.001. - DOI - PubMed
Rainey, K., Michalek, S. M., Wen, Z. T. & Wu, H. Glycosyltransferase-mediated biofilm matrix dynamics and virulence of Streptococcus mutans. Appl. Environ. Microbiol.85. 10.1128/AEM.02247-18 (2019). - PMC - PubMed
Ge X, et al. Involvement of NADH oxidase in biofilm formation in Streptococcus sanguinis. PLoS ONE. 2016;11:e0151142. doi: 10.1371/journal.pone.0151142. - DOI - PMC - PubMed
Bjur E, Eriksson-Ygberg S, Aslund F, Rhen M. Thioredoxin 1 promotes intracellular replication and virulence of Salmonella enterica serovar Typhimurium. Infect. Immun. 2006;74:5140–5151. doi: 10.1128/iai.00449-06. - DOI - PMC - PubMed
Kumagai Y, Yajima A, Konishi K. Peptidase activity of dipeptidyl aminopeptidase IV produced by Porphyromonas gingivalis is important but not sufficient for virulence. Microbiol. Immunol. 2003;47:735–743. doi: 10.1111/j.1348-0421.2003.tb03443.x. - DOI - PubMed
Kadri R, Devine D, Ashraf W. Purification and functional analysis of the DnaK homologue from Prevotella intermedia OMZ 326. FEMS Microbiol. Lett. 1998;167:63–68. doi: 10.1111/j.1574-6968.1998.tb13208.x. - DOI - PubMed
Santos SG, et al. Differentially regulated proteins in Prevotella intermedia after oxidative stress analyzed by 2D electrophoresis and mass spectrometry. Anaerobe. 2012;18:76–82. doi: 10.1016/j.anaerobe.2011.12.008. - DOI - PubMed
Guan SM, et al. Prevotella intermedia upregulates MMP-1 and MMP-8 expression in human periodontal ligament cells. FEMS Microbiol. Lett. 2009;299:214–222. doi: 10.1111/j.1574-6968.2009.01748.x. - DOI - PubMed
Kim SJ, et al. Prevotella intermedia lipopolysaccharide stimulates release of tumor necrosis factor-alpha through mitogen-activated protein kinase signaling pathways in monocyte-derived macrophages. FEMS Immunol. Med. Microbiol. 2007;51:407–413. doi: 10.1111/j.1574-695X.2007.00318.x. - DOI - PubMed
Nath A, Chattopadhya S, Chattopadhyay U, Sharma NK. Macrophage inflammatory protein (MIP)1alpha and MIP1beta differentially regulate release of inflammatory cytokines and generation of tumoricidal monocytes in malignancy. Cancer Immunol. Immunother. 2006;55:1534–1541. doi: 10.1007/s00262-006-0149-3. - DOI - PubMed
Caron E, Gross A, Liautard JP, Dornand J. Brucella species release a specific, protease-sensitive, inhibitor of TNF-alpha expression, active on human macrophage-like cells. J. Immunol. 1996;156:2885–2893. - PubMed
Karched M, Bhardwaj RG, Inbamani A, Asikainen S. Quantitation of biofilm and planktonic life forms of coexisting periodontal species. Anaerobe. 2015;35:13–20. doi: 10.1016/j.anaerobe.2015.04.013. - DOI - PubMed
Deatherage Kaiser, B. L. et al. Improved proteomic analysis following trichloroacetic acid extraction of Bacillus anthracis spore proteins. J. Microbiol. Methods118, 18–24. 10.1016/j.mimet.2015.08.008 (2015). - PubMed
Karched M, Bhardwaj RG, Tiss A, Asikainen S. Proteomic analysis and virulence assessment of Granulicatella adiacens secretome. Front. Cell. Infect. Microbiol. 2019;9:104. doi: 10.3389/fcimb.2019.00104. - DOI - PMC - PubMed
Alkandari SA, Bhardwaj RG, Ellepola A, Karched M. Proteomics of extracellular vesicles produced by Granulicatella adiacens, which causes infective endocarditis. PLoS ONE. 2020;15:e0227657. doi: 10.1371/journal.pone.0227657. - DOI - PMC - PubMed
Hiller K, Schobert M, Hundertmark C, Jahn D, Munch R. JVirGel: Calculation of virtual two-dimensional protein gels. Nucleic Acids Res. 2003;31:3862–3865. doi: 10.1093/nar/gkg536. - DOI - PMC - PubMed
Yu, N. Y. et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics26, 1608–1615. 10.1093/bioinformatics/btq249 (2010). - PMC - PubMed
Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol.37, 420–423. 10.1038/s41587-019-0036-z (2019). - PubMed
Bagos PG, Tsirigos KD, Liakopoulos TD, Hamodrakas SJ. Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model. J. Proteome Res. 2008;7:5082–5093. doi: 10.1021/pr800162c. - DOI - PubMed
Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S. Prediction of twin-arginine signal peptides. BMC Bioinformatics. 2005;6:167. doi: 10.1186/1471-2105-6-167. - DOI - PMC - PubMed
Conesa A, et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–3676. doi: 10.1093/bioinformatics/bti610. - DOI - PubMed
Yu CS, et al. CELLO2GO: A web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS ONE. 2014;9:e99368. doi: 10.1371/journal.pone.0099368. - DOI - PMC - PubMed
von Mering C, et al. STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res. 2005;33:D433–437. doi: 10.1093/nar/gki005. - DOI - PMC - PubMed
Garg A, Gupta D. VirulentPred: A SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformatics. 2008;9:62. doi: 10.1186/1471-2105-9-62. - DOI - PMC - PubMed