Despite reports on the occurrence of Granulicatella adiacens in infective endocarditis, few mechanistic studies on its virulence characteristics or pathogenicity are available. Proteins secreted by this species may act as determinants of host-microbe interaction and play a role in virulence. Our aim in this study was to investigate and functionally characterize the secretome of G. adiacens. Proteins in the secretome preparation were digested by trypsin and applied to nanoLC-ESI-MS/MS. By using a combined mass spectrometry and bioinformatics approach, we identified 101 proteins. Bioinformatics tools predicting subcellular localization revealed that 18 of the secreted proteins possessed signal sequence. More than 20% of the secretome proteins were putative virulence proteins including serine protease, superoxide dismutase, aminopeptidase, molecular chaperone DnaK, and thioredoxin. Ribosomal proteins, molecular chaperones, and glycolytic enzymes, together known as "moonlighting proteins," comprised fifth of the secretome proteins. By Gene Ontology analysis, more than 60 proteins of the secretome were grouped in biological processes or molecular functions. KEGG pathway analysis disclosed that the secretome consisted of enzymes involved in biosynthesis of antibiotics. Cytokine profiling revealed that secreted proteins stimulated key cytokines, such as IL-1β, MCP-1, TNF-α, and RANTES from human PBMCs. In summary, the results from the current investigation of the G. adiacens secretome provide a basis for understanding possible pathogenic mechanisms of G. adiacens.
Massier S, Robin B, Mégroz M, Wright A, Harper M, Hayes B, Cosette P, Broutin I, Boyce JD, Dé E, Hardouin J.Front Microbiol. 2021 Oct 1;12:738780. doi: 10.3389/fmicb.2021.738780. eCollection 2021.PMID: 34659171 Free PMC article.
Cheng JH, Wang Y, Zhang XY, Sun ML, Zhang X, Song XY, Zhang YZ, Zhang Y, Chen XL.Front Microbiol. 2021 Mar 16;12:643508. doi: 10.3389/fmicb.2021.643508. eCollection 2021.PMID: 33796092 Free PMC article.
Abdullah S. N., Farmer E. A., Spargo L., Logan R., Gully N. (2013). Porphyromonas gingivalis peptidylarginine deiminase substrate specificity. Anaerobe 23, 102–108. 10.1016/j.anaerobe.2013.07.001 - DOI - PubMed
Afzal M., Shafeeq S., Kuipers O. P. (2015). Ascorbic acid-dependent gene expression in Streptococcus pneumoniae and the activator function of the transcriptional regulator UlaR2. Front. Microbiol. 6:72. 10.3389/fmicb.2015.00072 - DOI - PMC - PubMed
Bagos P. G., Tsirigos K. D., Liakopoulos T. D., Hamodrakas S. J. (2008). Prediction of lipoprotein signal peptides in gram-positive bacteria with a hidden markov model. J. Proteome Res. 7, 5082–5093. 10.1021/pr800162c - DOI - PubMed
Bao K., Bostanci N., Selevsek N., Thurnheer T., Belibasakis G. N. (2015). Quantitative proteomics reveal distinct protein regulations caused by Aggregatibacter actinomycetemcomitans within subgingival biofilms. PLoS ONE 10:e0119222. 10.1371/journal.pone.0119222 - DOI - PMC - PubMed
Bao K., Bostanci N., Thurnheer T., Belibasakis G. N. (2017). Proteomic shifts in multi-species oral biofilms caused by Anaeroglobus geminatus. Sci. Rep. 7:4409. 10.1038/s41598-017-04594-9 - DOI - PMC - PubMed
Barnard-Britson S., Chi X., Nonaka K., Spork A. P., Tibrewal N., Goswami A., et al. . (2012). Amalgamation of nucleosides and amino acids in antibiotic biosynthesis: discovery of an L-threonine:uridine-5'-aldehyde transaldolase. J. Am. Chem. Soc. 134, 18514–18517. 10.1021/ja308185q - DOI - PMC - PubMed
Belstrøm D., Fiehn N. E., Nielsen C. H., Kirkby N., Twetman S., Klepac-Ceraj V., et al. . (2014). Differences in bacterial saliva profile between periodontitis patients and a control cohort. Journal of clinical periodontology 41, 104–112. 10.1111/jcpe.12190 - DOI - PubMed
Bendtsen J. D., Kiemer L., Fausbøll A., Brunak S. (2005a). Non-classical protein secretion in bacteria. BMC Microbiol. 5:58. 10.1186/1471-2180-5-58 - DOI - PMC - PubMed
Bendtsen J. D., Nielsen H., von Heijne G., Brunak S. (2004). Improved prediction of signal peptides: signalp 3.0. J. Mol. Biol. 340, 783–795. 10.1016/j.jmb.2004.05.028 - DOI - PubMed
Bendtsen J. D., Nielsen H., Widdick D., Palmer T., Brunak S. (2005b). Prediction of twin-arginine signal peptides. BMC Bioinform. 6:167. 10.1186/1471-2105-6-167 - DOI - PMC - PubMed
Bhardwaj R. G., Al-Khabbaz A., Karched M. (2018). Cytokine induction of peripheral blood mononuclear cells by biofilms and biofilm supernatants of Granulicatella and Abiotrophia spp. Microb. Pathog. 114, 90–94. 10.1016/j.micpath.2017.11.037 - DOI - PubMed
Bjur E., Eriksson-Ygberg S., Aslund F., Rhen M. (2006). Thioredoxin 1 promotes intracellular replication and virulence of Salmonella enterica serovar Typhimurium. Infect. Immun. 74, 5140–5151. 10.1128/IAI.00449-06 - DOI - PMC - PubMed
Caron E., Gross A., Liautard J. P., Dornand J. (1996). Brucella species release a specific, protease-sensitive, inhibitor of TNF-alpha expression, active on human macrophage-like cells. J. Immunol. 156, 2885–2893. - PubMed
Carroll R. K., Robison T. M., Rivera F. E., Davenport J. E., Jonsson I. M., Florczyk D., et al. . (2012). Identification of an intracellular M17 family leucine aminopeptidase that is required for virulence in Staphylococcus aureus. Microbes Infect. 14, 989–999. 10.1016/j.micinf.2012.04.013 - DOI - PMC - PubMed
Cezairliyan B., Ausubel F. M. (2017). Investment in secreted enzymes during nutrient-limited growth is utility dependent. Proc. Natl. Acad. Sci. U.S.A. 114, E7796–E7802. 10.1073/pnas.1708580114 - DOI - PMC - PubMed
Chen L., Zheng D., Liu B., Yang J., Jin Q. (2016). VFDB 2016: hierarchical and refined dataset for big data analysis−10 years on. Nucl. Acids Res. 44, D694–D697. 10.1093/nar/gkv1239 - DOI - PMC - PubMed
Christensen J. J., Facklam R. R. (2001). Granulicatella and Abiotrophia species from human clinical specimens. J. Clin. Microbiol. 39, 3520–3523. 10.1128/JCM.39.10.3520-3523.2001 - DOI - PMC - PubMed
Collins M. D., Lawson P. A. (2000). The genus Abiotrophia (Kawamura et al.) is not monophyletic: proposal of Granulicatella gen. nov., Granulicatella adiacens comb. nov., Granulicatella elegans comb. nov. and Granulicatella balaenopterae comb. nov. Int. J. Syst. Evol. Microbiol. 50, 365–369. 10.1099/00207713-50-1-365 - DOI - PubMed
Costa T. R., Felisberto-Rodrigues C., Meir A., Prevost M. S., Redzej A., Trokter M., et al. . (2015). Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359. 10.1038/nrmicro3456 - DOI - PubMed
Dapunt U., Giese T., Stegmaier S., Moghaddam A., Hänsch G. M. (2016). The osteoblast as an inflammatory cell: production of cytokines in response to bacteria and components of bacterial biofilms. BMC Musculoske. Disord. 17:243. 10.1186/s12891-016-1091-y - DOI - PMC - PubMed
Deatherage Kaiser B. L., Wunschel D. S., Sydor M. A., Warner M. G., Wahl K. L., Hutchison J. R. (2015). Improved proteomic analysis following trichloroacetic acid extraction of Bacillus anthracis spore proteins. J. Microbiol. Methods 118, 18–24. 10.1016/j.mimet.2015.08.008 - DOI - PubMed
Diaz-Torres M. L., Russell R. R. (2001). HtrA protease and processing of extracellular proteins of Streptococcus mutans. FEMS Microbiol. Lett. 204, 23–28. 10.1111/j.1574-6968.2001.tb10856.x - DOI - PubMed
Doron L., Coppenhagen-Glazer S., Ibrahim Y., Eini A., Naor R., Rosen G., et al. . (2014). Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease. PLoS ONE 9:e111329. 10.1371/journal.pone.0111329 - DOI - PMC - PubMed
Dubreuil J. D., Jacques M., Brochu D., Frenette M., Vadeboncoeur C. (1996). Surface location of HPr, a phosphocarrier of the phosphoenolpyruvate: sugar phosphotransferase system in Streptococcus suis. Microbiology 142, 837–843. 10.1099/00221287-142-4-837 - DOI - PubMed
Dutta P. R., Cappello R., Navarro-García F., Nataro J. P. (2002). Functional comparison of serine protease autotransporters of enterobacteriaceae. Infect. Immun. 70, 7105–7113. 10.1128/IAI.70.12.7105-7113.2002 - DOI - PMC - PubMed
Feng S. X., Ma J. C., Yang J., Hu Z., Zhu L., Bi H. K., et al. . (2015). Ralstonia solanacearum fatty acid composition is determined by interaction of two 3-ketoacyl-acyl carrier protein reductases encoded on separate replicons. BMC Microbiol. 15:223. 10.1186/s12866-015-0554-x - DOI - PMC - PubMed
Finlay B. B., Falkow S. (1997). Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61, 136–169. - PMC - PubMed
Fujishima K., Kawada-Matsuo M., Oogai Y., Tokuda M., Torii M., Komatsuzawa H. (2013). dpr and sod in Streptococcus mutans are involved in coexistence with S. sanguinis, and PerR is associated with resistance to H2O2. Appl. Environ. Microbiol. 79, 1436–1443. 10.1128/AEM.03306-12 - DOI - PMC - PubMed
Fuss I. J., Kanof M. E., Smith P. D., Zola H. (2009). Isolation of whole mononuclear cells from peripheral blood and cord blood. Curr. Protocol Immunol. Chap. 7:1. 10.1002/0471142735.im0701s85 - DOI - PubMed
Garg A., Gupta D. (2008). VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinform. 9:62. 10.1186/1471-2105-9-62 - DOI - PMC - PubMed
Ge X., Yu Y., Zhang M., Chen L., Chen W., Elrami F., et al. . (2016). Involvement of NADH oxidase in competition and endocarditis virulence in Streptococcus sanguinis. Infect. Immun. 84, 1470–1477. 10.1128/IAI.01203-15 - DOI - PMC - PubMed
Gerlach D., Reichardt W., Vettermann S. (1998). Extracellular superoxide dismutase from Streptococcus pyogenes type 12 strain is manganese-dependent. FEMS Microbiol. Lett. 160, 217–224. - PubMed
Goosens V. J., Monteferrante C. G., van Dijl J. M. (2014). The Tat system of Gram-positive bacteria. Biochim. Biophys. Acta 1843, 1698–1706. 10.1016/j.bbamcr.2013.10.008 - DOI - PubMed
Goulhen F., Hafezi A., Uitto V. J., Hinode D., Nakamura R., Grenier D., et al. . (1998). Subcellular localization and cytotoxic activity of the GroEL-like protein isolated from Actinobacillus actinomycetemcomitans. Infect. Immun. 66, 5307–5313. - PMC - PubMed
Graf A. C., Leonard A., Schäuble M., Rieckmann L. M., Hoyer J., Maaß S., et al. . (2019). Virulence factors produced by Staphylococcus aureus biofilms have a moonlighting function contributing to biofilm integrity. Mol. Cell Proteomics. 1–47. 10.1074/mcp.RA118.001120 - DOI - PMC - PubMed
Green E. R., Mecsas J. (2016). Bacterial secretion systems: an overview. Microbiol. Spectr. 4, 1–19. 10.1128/microbiolspec.VMBF-0012-2015 - DOI - PMC - PubMed
Großhennig S., Ischebeck T., Gibhardt J., Busse J., Feussner I., Stülke J. (2016). Hydrogen sulfide is a novel potential virulence factor of Mycoplasma pneumoniae: characterization of the unusual cysteine desulfurase/desulfhydrase HapE. Mol. Microbiol. 100, 42–54. 10.1111/mmi.13300 - DOI - PubMed
Henderson B., Allan E., Coates A. R. (2006). Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection. Infect. Immun. 74, 3693–3706. 10.1128/IAI.01882-05 - DOI - PMC - PubMed
Henderson B., Martin A. (2011). Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect. Immun. 79, 3476–3491. 10.1128/IAI.00179-11 - DOI - PMC - PubMed
Henderson B., Martin A. C. (2014). Protein moonlighting: a new factor in biology and medicine. Biochem. Soc. Trans. 42, 1671–1678. 10.1042/BST20140273 - DOI - PubMed
Hernández S., Ferragut G., Amela I., Perez-Pons J., Piñol J., Mozo-Villarias A., et al. . (2014). MultitaskProtDB: a database of multitasking proteins. Nucl. Acids Res. 42, D517–520. 10.1093/nar/gkt1153 - DOI - PMC - PubMed
Hiller K., Schobert M., Hundertmark C., Jahn D., Münch R. (2003). JVirGel: calculation of virtual two-dimensional protein gels. Nucl. Acids Res. 31, 3862–3865. 10.1093/nar/gkg536 - DOI - PMC - PubMed
Hinode D., Grenier D., Mayrand D. (1995). Purification and characterization of a DnaK-like and a GroEL-like protein from Porphyromonas gingivalis. Anaerobe 1, 283–290. - PubMed
Hirokawa T., Boon-Chieng S., Mitaku S. (1998). SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378–379. - PubMed
Hosogi Y., Duncan M. J. (2005). Gene expression in Porphyromonas gingivalis after contact with human epithelial cells. Infect. Immun. 73, 2327–2335. 10.1128/IAI.73.4.2327-2335.2005 - DOI - PMC - PubMed
Jeffery C. J. (1999). Moonlighting proteins. Trends Biochem. Sci. 24, 8–11. - PubMed
Jutras B. L., Verma A., Adams C. A., Brissette C. A., Burns L. H., Whetstine C. R., et al. . (2012). BpaB and EbfC DNA-binding proteins regulate production of the Lyme disease spirochete's infection-associated Erp surface proteins. J. Bacteriol. 194, 778–786. 10.1128/JB.06394-11 - DOI - PMC - PubMed
Kall L., Krogh A., Sonnhammer E. L. (2007). Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res. 35, W429–W432. 10.1093/nar/gkm256 - DOI - PMC - PubMed
Kanamoto T., Sato S., Nakashima H., Inoue M. (2007). Proliferation of mitogen-stimulated human peripheral blood mononuclear cells is inhibited by extracellular arginine deiminase of Granulicatella elegans isolated from the human mouth. J. Infect. Chemother. 13, 353–355. 10.1007/s10156-007-0546-3 - DOI - PubMed
Kanasi E., Dewhirst F. E., Chalmers N. I., Kent R., Jr., Moore A., Hughes C. V., et al. . (2010). Clonal analysis of the microbiota of severe early childhood caries. Caries Res. 44, 485–497. 10.1159/000320158 - DOI - PMC - PubMed
Karched M., Bhardwaj R. G., Asikainen S. E. (2015). Coaggregation and biofilm growth of Granulicatella spp. with Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans. BMC Microbiol. 15:114. 10.1186/s12866-015-0439-z - DOI - PMC - PubMed
Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580. 10.1006/jmbi.2000.4315 - DOI - PubMed
Lanotte P., Perivier M., Haguenoer E., Mereghetti L., Burucoa C., Claverol S., et al. . (2013). Proteomic biomarkers associated with Streptococcus agalactiae invasive genogroups. PLoS ONE 8:e54393. 10.1371/journal.pone.0054393 - DOI - PMC - PubMed
Lee V. T., Schneewind O. (2001). Protein secretion and the pathogenesis of bacterial infections. Genes. Dev. 15, 1725–1752. 10.1101/gad.896801 - DOI - PubMed
Lewthwaite J., Skinner A., Henderson B. (1998). Are molecular chaperones microbial virulence factors? Trends Microbiol. 6, 426–428. - PubMed
Lin C. H., Hsu R. B. (2007). Infective endocarditis caused by nutritionally variant streptococci. Am. J. Med. Sci. 334, 235–239. 10.1097/MAJ.0b013e3180a6eeab - DOI - PubMed
Liu Y., Chen S., Zhang J., Gao B. (2016). Growth, microcystin-production and proteomic responses of Microcystis aeruginosa under long-term exposure to amoxicillin. Water Res. 93, 141–152. 10.1016/j.watres.2016.01.060 - DOI - PubMed
Loprasert S., Whangsuk W., Sallabhan R., Mongkolsuk S. (2004). DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide. Arch. Microbiol. 182, 96–101. 10.1007/s00203-004-0694-0 - DOI - PubMed
Lu G. T., Xie J. R., Chen L., Hu J. R., An S. Q., Su H. Z., et al. . (2009). Glyceraldehyde-3-phosphate dehydrogenase of Xanthomonas campestris pv. campestris is required for extracellular polysaccharide production and full virulence. Microbiology 155, 1602–1612. 10.1099/mic.0.023762-0 - DOI - PubMed
Madureira P., Baptista M., Vieira M., Magalhães V., Camelo A., Oliveira L., et al. . (2007). Streptococcus agalactiae GAPDH is a virulence-associated immunomodulatory protein. J. Immunol. 178, 1379–1387. 10.4049/jimmunol.178.3.1379 - DOI - PubMed
McMillan D. J., Davies M. R., Good M. F., Sriprakash K. S. (2004). Immune response to superoxide dismutase in group A streptococcal infection. FEMS Immunol. Med. Microbiol. 40, 249–256. 10.1016/S0928-8244(04)00003-3 - DOI - PubMed
Modun B., Morrissey J., Williams P. (2000). The staphylococcal transferrin receptor: a glycolytic enzyme with novel functions. Trends Microbiol. 8, 231–237. 10.1016/S0966-842X(00)01728-5 - DOI - PubMed
Mohammed M. M. A., Pettersen V. K., Nerland A. H., Wiker H. G., Bakken V. (2017). Quantitative proteomic analysis of extracellular matrix extracted from mono- and dual-species biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis. Anaerobe 44, 133–142. 10.1016/j.anaerobe.2017.03.002 - DOI - PubMed
Natale P., Brüser T., Driessen A. J. (2008). Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane–distinct translocases and mechanisms. Biochim. Biophys. Acta 1778, 1735–1756. 10.1016/j.bbamem.2007.07.015 - DOI - PubMed
Nelson D., Goldstein J. M., Boatright K., Harty D. W., Cook S. L., Hickman P. J., et al. . (2001). pH-regulated secretion of a glyceraldehyde-3-phosphate dehydrogenase from Streptococcus gordonii FSS2: purification, characterization, and cloning of the gene encoding this enzyme. J. Dent Res. 80, 371–377. 10.1177/00220345010800011301 - DOI - PubMed
Oliveira S. C., Splitter G. A. (1996). Immunization of mice with recombinant L7/L12 ribosomal protein confers protection against Brucella abortus infection. Vaccine 14, 959–962. - PubMed
Olsen I., Singhrao S. K., Potempa J. (2018). Citrullination as a plausible link to periodontitis, rheumatoid arthritis, atherosclerosis and Alzheimer's disease. J. Oral Microbiol. 10:1487742. 10.1080/20002297.2018.1487742 - DOI - PMC - PubMed
Oscarsson J., Karched M., Thay B., Chen C., Asikainen S. (2008). Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells. BMC Microbiol. 8:206. 10.1186/1471-2180-8-206 - DOI - PMC - PubMed
Pallen M. J. (2002). The ESAT-6/WXG100 superfamily – and a new Gram-positive secretion system? Trends Microbiol. 10, 209–212. 10.1016/S0966-842X(02)02345-4 - DOI - PubMed
Pavkova I., Kopeckova M., Klimentova J., Schmidt M., Sheshko V., Sobol M., et al. . (2017). The Multiple Localized Glyceraldehyde-3-Phosphate Dehydrogenase contributes to the attenuation of the francisella tularensis dsba deletion mutant. Front. Cell Infect. Microbiol. 7:503. 10.3389/fcimb.2017.00503 - DOI - PMC - PubMed
Ribeiro L. A., Azevedo V., Le Loir Y., Oliveira S. C., Dieye Y., Piard J. C., et al. . (2002). Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl. Environ. Microbiol. 68, 910–916. 10.1128/AEM.68.2.910-916.2002 - DOI - PMC - PubMed
Romero P., López R., Garcia E. (2004). Characterization of LytA-like N-acetylmuramoyl-L-alanine amidases from two new Streptococcus mitis bacteriophages provides insights into the properties of the major pneumococcal autolysin. J. Bacteriol. 186, 8229–8239. 10.1128/JB.186.24.8229-8239.2004 - DOI - PMC - PubMed
Rose R. W., Brüser T., Kissinger J. C., Pohlschröder M. (2002). Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol. Microbiol. 45, 943–950. 10.1046/j.1365-2958.2002.03090.x - DOI - PubMed
Ruiz-Perez F., Nataro J. P. (2014). Bacterial serine proteases secreted by the autotransporter pathway: classification, specificity, and role in virulence. Cell Mol. Life Sci. 71, 745–770. 10.1007/s00018-013-1355-8 - DOI - PMC - PubMed
Ruiz-Perez F., Wahid R., Faherty C. S., Kolappaswamy K., Rodriguez L., Santiago A., et al. . (2011). Serine protease autotransporters from Shigella flexneri and pathogenic Escherichia coli target a broad range of leukocyte glycoproteins. Proc. Natl. Acad. Sci. U.S.A 108, 12881–12886. 10.1073/pnas.1101006108 - DOI - PMC - PubMed
Ruoff K. L. (1991). Nutritionally variant streptococci. Clin. Microbiol. Rev. 4, 184–190. - PMC - PubMed
Schneewind O., Missiakas D. M. (2012). Protein secretion and surface display in Gram-positive bacteria. Philos. Trans. R Soc. Lond. B Biol. Sci. 367, 1123–1139. 10.1098/rstb.2011.0210 - DOI - PMC - PubMed
Shi X. Z., Feng X. W., Sun J. J., Yang M. C., Lan J. F., Zhao X. F., et al. . (2016). Involvement of a LysM and putative peptidoglycan-binding domain-containing protein in the antibacterial immune response of kuruma shrimp Marsupenaeus japonicus. Fish Shellfish Immunol. 54, 489–498. 10.1016/j.fsi.2016.04.134 - DOI - PubMed
Siqueira J. F., Jr., Rôças I. N. (2006). Catonella morbi and Granulicatella adiacens: new species in endodontic infections. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 102, 259–264. 10.1016/j.tripleo.2005.09.021 - DOI - PubMed
Stobernack T., Glasner C., Junker S., Gabarrini G., de Smit M., de Jong A., et al. . (2016). Extracellular proteome and citrullinome of the oral Pathogen Porphyromonas gingivalis. J. Proteome Res. 15, 4532–4543. 10.1021/acs.jproteome.6b00634 - DOI - PubMed
Suriyanarayanan T., Qingsong L., Kwang L. T., Mun L. Y., Truong T., Seneviratne C. J. (2018). Quantitative proteomics of strong and weak biofilm formers of enterococcus faecalis reveals novel regulators of biofilm formation. Mol. Cell Proteomics 17, 643–654. 10.1074/mcp.RA117.000461 - DOI - PMC - PubMed
Terao Y., Yamaguchi M., Hamada S., Kawabata S. (2006). Multifunctional glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J. Biol. Chem. 281, 14215–14223. 10.1074/jbc.M513408200 - DOI - PubMed
Terrasse R., Amoroso A., Vernet T., Di Guilmi A. M. (2015). Streptococcus pneumoniae GAPDH Is Released by Cell Lysis and interacts with peptidoglycan. PLoS ONE 10:e0125377. 10.1371/journal.pone.0125377 - DOI - PMC - PubMed
Tortosa P., Albano M., Dubnau D. (2000). Characterization of ylbF, a new gene involved in competence development and sporulation in Bacillus subtilis. Mol. Microbiol. 35, 1110–1119. 10.1046/j.1365-2958.2000.01779.x - DOI - PubMed
Tunio S. A., Oldfield N. J., Berry A. D. A, Ala'Aldeen Wooldridge, K. G., Turner D. P. (2010). The moonlighting protein fructose-1, 6-bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion. Mol. Microbiol. 76, 605–615. 10.1111/j.1365-2958.2010.07098.x - DOI - PubMed
von Mering C., Jensen L. J., Snel B., Hooper S. D., Krupp M., Foglierini M., et al. . (2005). STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucl. Acids Res. 33, D433–D437. 10.1093/nar/gki005 - DOI - PMC - PubMed
Wang G., Xia Y., Cui J., Gu Z., Song Y., Chen Y. Q., et al. . (2014). The roles of moonlighting proteins in bacteria. Curr. Issues Mol. Biol. 16, 15–22. 10.21775/cimb.016.015 - DOI - PubMed
Ye J., Zhang Y., Cui H., Liu J., Wu Y., Cheng Y., et al. . (2018). WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Res. 46, W71–W75. 10.1093/nar/gky400 - DOI - PMC - PubMed
Yu N. Y., Wagner J. R., Laird M. R., Melli G., Rey S., Lo R., et al. . (2010). PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615. 10.1093/bioinformatics/btq249 - DOI - PMC - PubMed
Yuan Z., Mattick J. S., Teasdale R. D. (2004). SVMtm: support vector machines to predict transmembrane segments. J. Comput. Chem. 25, 632–636. 10.1002/jcc.10411 - DOI - PubMed
Zhong Q., Zhao Y., Chen T., Yin S., Yao X., Wang J., et al. . (2014). A functional peptidoglycan hydrolase characterized from T4SS in 89K pathogenicity island of epidemic Streptococcus suis serotype 2. BMC Microbiol. 14:73. 10.1186/1471-2180-14-73 - DOI - PMC - PubMed
Zijnge V., Kieselbach T., Oscarsson J. (2012). Proteomics of protein secretion by Aggregatibacter actinomycetemcomitans. PLoS ONE 7:e41662. 10.1371/journal.pone.0041662 - DOI - PMC - PubMed