Proteomic Analysis and Virulence Assessment of Granulicatella adiacens Secretome

Affiliations


Abstract

Despite reports on the occurrence of Granulicatella adiacens in infective endocarditis, few mechanistic studies on its virulence characteristics or pathogenicity are available. Proteins secreted by this species may act as determinants of host-microbe interaction and play a role in virulence. Our aim in this study was to investigate and functionally characterize the secretome of G. adiacens. Proteins in the secretome preparation were digested by trypsin and applied to nanoLC-ESI-MS/MS. By using a combined mass spectrometry and bioinformatics approach, we identified 101 proteins. Bioinformatics tools predicting subcellular localization revealed that 18 of the secreted proteins possessed signal sequence. More than 20% of the secretome proteins were putative virulence proteins including serine protease, superoxide dismutase, aminopeptidase, molecular chaperone DnaK, and thioredoxin. Ribosomal proteins, molecular chaperones, and glycolytic enzymes, together known as "moonlighting proteins," comprised fifth of the secretome proteins. By Gene Ontology analysis, more than 60 proteins of the secretome were grouped in biological processes or molecular functions. KEGG pathway analysis disclosed that the secretome consisted of enzymes involved in biosynthesis of antibiotics. Cytokine profiling revealed that secreted proteins stimulated key cytokines, such as IL-1β, MCP-1, TNF-α, and RANTES from human PBMCs. In summary, the results from the current investigation of the G. adiacens secretome provide a basis for understanding possible pathogenic mechanisms of G. adiacens.

Keywords: Granulicatella; infective endocarditis; oral; periodontitis; secretome; virulence.


Figures


Similar articles

Secretome analysis of an environmental isolate Enterobacter sp. S-33 identifies proteins related to pathogenicity.

Kumari K, Sharma PK, Aggarwal Y, Singh RP.Arch Microbiol. 2022 Oct 5;204(11):662. doi: 10.1007/s00203-022-03277-y.PMID: 36198868

Proteomics of extracellular vesicles produced by Granulicatella adiacens, which causes infective endocarditis.

Alkandari SA, Bhardwaj RG, Ellepola A, Karched M.PLoS One. 2020 Nov 20;15(11):e0227657. doi: 10.1371/journal.pone.0227657. eCollection 2020.PMID: 33216751 Free PMC article.

Cytokine induction of peripheral blood mononuclear cells by biofilms and biofilm supernatants of Granulicatella and Abiotrophia spp.

Bhardwaj RG, Al-Khabbaz A, Karched M.Microb Pathog. 2018 Jan;114:90-94. doi: 10.1016/j.micpath.2017.11.037. Epub 2017 Nov 23.PMID: 29174702

Prosthetic joint infection caused by Granulicatella adiacens: a case series and review of literature.

Quénard F, Seng P, Lagier JC, Fenollar F, Stein A.BMC Musculoskelet Disord. 2017 Jun 23;18(1):276. doi: 10.1186/s12891-017-1630-1.PMID: 28645272 Free PMC article. Review.

Infections related to Granulicatella adiacens: Report of two cases and review of literature.

Macin S, İnkaya AÇ, Tuncer Ö, Ünal S, Akyön Y.Indian J Med Microbiol. 2016 Oct-Dec;34(4):547-550. doi: 10.4103/0255-0857.195377.PMID: 27934842 Review.


Cited by

Secretome analysis of an environmental isolate Enterobacter sp. S-33 identifies proteins related to pathogenicity.

Kumari K, Sharma PK, Aggarwal Y, Singh RP.Arch Microbiol. 2022 Oct 5;204(11):662. doi: 10.1007/s00203-022-03277-y.PMID: 36198868

Proteomic analysis of the periodontal pathogen Prevotella intermedia secretomes in biofilm and planktonic lifestyles.

Karched M, Bhardwaj RG, Qudeimat M, Al-Khabbaz A, Ellepola A.Sci Rep. 2022 Apr 4;12(1):5636. doi: 10.1038/s41598-022-09085-0.PMID: 35379855 Free PMC article.

Phosphorylation of Extracellular Proteins in Acinetobacter baumannii in Sessile Mode of Growth.

Massier S, Robin B, Mégroz M, Wright A, Harper M, Hayes B, Cosette P, Broutin I, Boyce JD, Dé E, Hardouin J.Front Microbiol. 2021 Oct 1;12:738780. doi: 10.3389/fmicb.2021.738780. eCollection 2021.PMID: 34659171 Free PMC article.

Characterization and Diversity Analysis of the Extracellular Proteases of Thermophilic Anoxybacillus caldiproteolyticus 1A02591 From Deep-Sea Hydrothermal Vent Sediment.

Cheng JH, Wang Y, Zhang XY, Sun ML, Zhang X, Song XY, Zhang YZ, Zhang Y, Chen XL.Front Microbiol. 2021 Mar 16;12:643508. doi: 10.3389/fmicb.2021.643508. eCollection 2021.PMID: 33796092 Free PMC article.

Internal jugular vein thrombosis associated with Granulicatella adiacens.

Kawai H, Shiojiri T.BMJ Case Rep. 2021 Jan 20;14(1):e238404. doi: 10.1136/bcr-2020-238404.PMID: 33472803 Free PMC article.


KMEL References


References

  1.  
    1. Abdullah S. N., Farmer E. A., Spargo L., Logan R., Gully N. (2013). Porphyromonas gingivalis peptidylarginine deiminase substrate specificity. Anaerobe 23, 102–108. 10.1016/j.anaerobe.2013.07.001 - DOI - PubMed
  2.  
    1. Afzal M., Shafeeq S., Kuipers O. P. (2015). Ascorbic acid-dependent gene expression in Streptococcus pneumoniae and the activator function of the transcriptional regulator UlaR2. Front. Microbiol. 6:72. 10.3389/fmicb.2015.00072 - DOI - PMC - PubMed
  3.  
    1. Bagos P. G., Tsirigos K. D., Liakopoulos T. D., Hamodrakas S. J. (2008). Prediction of lipoprotein signal peptides in gram-positive bacteria with a hidden markov model. J. Proteome Res. 7, 5082–5093. 10.1021/pr800162c - DOI - PubMed
  4.  
    1. Bao K., Bostanci N., Selevsek N., Thurnheer T., Belibasakis G. N. (2015). Quantitative proteomics reveal distinct protein regulations caused by Aggregatibacter actinomycetemcomitans within subgingival biofilms. PLoS ONE 10:e0119222. 10.1371/journal.pone.0119222 - DOI - PMC - PubMed
  5.  
    1. Bao K., Bostanci N., Thurnheer T., Belibasakis G. N. (2017). Proteomic shifts in multi-species oral biofilms caused by Anaeroglobus geminatus. Sci. Rep. 7:4409. 10.1038/s41598-017-04594-9 - DOI - PMC - PubMed
  6.  
    1. Barnard-Britson S., Chi X., Nonaka K., Spork A. P., Tibrewal N., Goswami A., et al. . (2012). Amalgamation of nucleosides and amino acids in antibiotic biosynthesis: discovery of an L-threonine:uridine-5'-aldehyde transaldolase. J. Am. Chem. Soc. 134, 18514–18517. 10.1021/ja308185q - DOI - PMC - PubMed
  7.  
    1. Belstrøm D., Fiehn N. E., Nielsen C. H., Kirkby N., Twetman S., Klepac-Ceraj V., et al. . (2014). Differences in bacterial saliva profile between periodontitis patients and a control cohort. Journal of clinical periodontology 41, 104–112. 10.1111/jcpe.12190 - DOI - PubMed
  8.  
    1. Bendtsen J. D., Kiemer L., Fausbøll A., Brunak S. (2005a). Non-classical protein secretion in bacteria. BMC Microbiol. 5:58. 10.1186/1471-2180-5-58 - DOI - PMC - PubMed
  9.  
    1. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S. (2004). Improved prediction of signal peptides: signalp 3.0. J. Mol. Biol. 340, 783–795. 10.1016/j.jmb.2004.05.028 - DOI - PubMed
  10.  
    1. Bendtsen J. D., Nielsen H., Widdick D., Palmer T., Brunak S. (2005b). Prediction of twin-arginine signal peptides. BMC Bioinform. 6:167. 10.1186/1471-2105-6-167 - DOI - PMC - PubMed
  11.  
    1. Bhardwaj R. G., Al-Khabbaz A., Karched M. (2018). Cytokine induction of peripheral blood mononuclear cells by biofilms and biofilm supernatants of Granulicatella and Abiotrophia spp. Microb. Pathog. 114, 90–94. 10.1016/j.micpath.2017.11.037 - DOI - PubMed
  12.  
    1. Bjur E., Eriksson-Ygberg S., Aslund F., Rhen M. (2006). Thioredoxin 1 promotes intracellular replication and virulence of Salmonella enterica serovar Typhimurium. Infect. Immun. 74, 5140–5151. 10.1128/IAI.00449-06 - DOI - PMC - PubMed
  13.  
    1. Caron E., Gross A., Liautard J. P., Dornand J. (1996). Brucella species release a specific, protease-sensitive, inhibitor of TNF-alpha expression, active on human macrophage-like cells. J. Immunol. 156, 2885–2893. - PubMed
  14.  
    1. Carroll R. K., Robison T. M., Rivera F. E., Davenport J. E., Jonsson I. M., Florczyk D., et al. . (2012). Identification of an intracellular M17 family leucine aminopeptidase that is required for virulence in Staphylococcus aureus. Microbes Infect. 14, 989–999. 10.1016/j.micinf.2012.04.013 - DOI - PMC - PubMed
  15.  
    1. Cezairliyan B., Ausubel F. M. (2017). Investment in secreted enzymes during nutrient-limited growth is utility dependent. Proc. Natl. Acad. Sci. U.S.A. 114, E7796–E7802. 10.1073/pnas.1708580114 - DOI - PMC - PubMed
  16.  
    1. Chen L., Zheng D., Liu B., Yang J., Jin Q. (2016). VFDB 2016: hierarchical and refined dataset for big data analysis−10 years on. Nucl. Acids Res. 44, D694–D697. 10.1093/nar/gkv1239 - DOI - PMC - PubMed
  17.  
    1. Christensen J. J., Facklam R. R. (2001). Granulicatella and Abiotrophia species from human clinical specimens. J. Clin. Microbiol. 39, 3520–3523. 10.1128/JCM.39.10.3520-3523.2001 - DOI - PMC - PubMed
  18.  
    1. Collins M. D., Lawson P. A. (2000). The genus Abiotrophia (Kawamura et al.) is not monophyletic: proposal of Granulicatella gen. nov., Granulicatella adiacens comb. nov., Granulicatella elegans comb. nov. and Granulicatella balaenopterae comb. nov. Int. J. Syst. Evol. Microbiol. 50, 365–369. 10.1099/00207713-50-1-365 - DOI - PubMed
  19.  
    1. Costa T. R., Felisberto-Rodrigues C., Meir A., Prevost M. S., Redzej A., Trokter M., et al. . (2015). Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343–359. 10.1038/nrmicro3456 - DOI - PubMed
  20.  
    1. Dapunt U., Giese T., Stegmaier S., Moghaddam A., Hänsch G. M. (2016). The osteoblast as an inflammatory cell: production of cytokines in response to bacteria and components of bacterial biofilms. BMC Musculoske. Disord. 17:243. 10.1186/s12891-016-1091-y - DOI - PMC - PubMed
  21.  
    1. Deatherage Kaiser B. L., Wunschel D. S., Sydor M. A., Warner M. G., Wahl K. L., Hutchison J. R. (2015). Improved proteomic analysis following trichloroacetic acid extraction of Bacillus anthracis spore proteins. J. Microbiol. Methods 118, 18–24. 10.1016/j.mimet.2015.08.008 - DOI - PubMed
  22.  
    1. Diaz-Torres M. L., Russell R. R. (2001). HtrA protease and processing of extracellular proteins of Streptococcus mutans. FEMS Microbiol. Lett. 204, 23–28. 10.1111/j.1574-6968.2001.tb10856.x - DOI - PubMed
  23.  
    1. Doron L., Coppenhagen-Glazer S., Ibrahim Y., Eini A., Naor R., Rosen G., et al. . (2014). Identification and characterization of fusolisin, the Fusobacterium nucleatum autotransporter serine protease. PLoS ONE 9:e111329. 10.1371/journal.pone.0111329 - DOI - PMC - PubMed
  24.  
    1. Dubreuil J. D., Jacques M., Brochu D., Frenette M., Vadeboncoeur C. (1996). Surface location of HPr, a phosphocarrier of the phosphoenolpyruvate: sugar phosphotransferase system in Streptococcus suis. Microbiology 142, 837–843. 10.1099/00221287-142-4-837 - DOI - PubMed
  25.  
    1. Dutta P. R., Cappello R., Navarro-García F., Nataro J. P. (2002). Functional comparison of serine protease autotransporters of enterobacteriaceae. Infect. Immun. 70, 7105–7113. 10.1128/IAI.70.12.7105-7113.2002 - DOI - PMC - PubMed
  26.  
    1. Feng S. X., Ma J. C., Yang J., Hu Z., Zhu L., Bi H. K., et al. . (2015). Ralstonia solanacearum fatty acid composition is determined by interaction of two 3-ketoacyl-acyl carrier protein reductases encoded on separate replicons. BMC Microbiol. 15:223. 10.1186/s12866-015-0554-x - DOI - PMC - PubMed
  27.  
    1. Finlay B. B., Falkow S. (1997). Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61, 136–169. - PMC - PubMed
  28.  
    1. Fujishima K., Kawada-Matsuo M., Oogai Y., Tokuda M., Torii M., Komatsuzawa H. (2013). dpr and sod in Streptococcus mutans are involved in coexistence with S. sanguinis, and PerR is associated with resistance to H2O2. Appl. Environ. Microbiol. 79, 1436–1443. 10.1128/AEM.03306-12 - DOI - PMC - PubMed
  29.  
    1. Fuss I. J., Kanof M. E., Smith P. D., Zola H. (2009). Isolation of whole mononuclear cells from peripheral blood and cord blood. Curr. Protocol Immunol. Chap. 7:1. 10.1002/0471142735.im0701s85 - DOI - PubMed
  30.  
    1. Garg A., Gupta D. (2008). VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinform. 9:62. 10.1186/1471-2105-9-62 - DOI - PMC - PubMed
  31.  
    1. Ge X., Yu Y., Zhang M., Chen L., Chen W., Elrami F., et al. . (2016). Involvement of NADH oxidase in competition and endocarditis virulence in Streptococcus sanguinis. Infect. Immun. 84, 1470–1477. 10.1128/IAI.01203-15 - DOI - PMC - PubMed
  32.  
    1. Gerlach D., Reichardt W., Vettermann S. (1998). Extracellular superoxide dismutase from Streptococcus pyogenes type 12 strain is manganese-dependent. FEMS Microbiol. Lett. 160, 217–224. - PubMed
  33.  
    1. Goosens V. J., Monteferrante C. G., van Dijl J. M. (2014). The Tat system of Gram-positive bacteria. Biochim. Biophys. Acta 1843, 1698–1706. 10.1016/j.bbamcr.2013.10.008 - DOI - PubMed
  34.  
    1. Goulhen F., Hafezi A., Uitto V. J., Hinode D., Nakamura R., Grenier D., et al. . (1998). Subcellular localization and cytotoxic activity of the GroEL-like protein isolated from Actinobacillus actinomycetemcomitans. Infect. Immun. 66, 5307–5313. - PMC - PubMed
  35.  
    1. Graf A. C., Leonard A., Schäuble M., Rieckmann L. M., Hoyer J., Maaß S., et al. . (2019). Virulence factors produced by Staphylococcus aureus biofilms have a moonlighting function contributing to biofilm integrity. Mol. Cell Proteomics. 1–47. 10.1074/mcp.RA118.001120 - DOI - PMC - PubMed
  36.  
    1. Green E. R., Mecsas J. (2016). Bacterial secretion systems: an overview. Microbiol. Spectr. 4, 1–19. 10.1128/microbiolspec.VMBF-0012-2015 - DOI - PMC - PubMed
  37.  
    1. Großhennig S., Ischebeck T., Gibhardt J., Busse J., Feussner I., Stülke J. (2016). Hydrogen sulfide is a novel potential virulence factor of Mycoplasma pneumoniae: characterization of the unusual cysteine desulfurase/desulfhydrase HapE. Mol. Microbiol. 100, 42–54. 10.1111/mmi.13300 - DOI - PubMed
  38.  
    1. Henderson B., Allan E., Coates A. R. (2006). Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection. Infect. Immun. 74, 3693–3706. 10.1128/IAI.01882-05 - DOI - PMC - PubMed
  39.  
    1. Henderson B., Martin A. (2011). Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect. Immun. 79, 3476–3491. 10.1128/IAI.00179-11 - DOI - PMC - PubMed
  40.  
    1. Henderson B., Martin A. C. (2014). Protein moonlighting: a new factor in biology and medicine. Biochem. Soc. Trans. 42, 1671–1678. 10.1042/BST20140273 - DOI - PubMed
  41.  
    1. Hernández S., Ferragut G., Amela I., Perez-Pons J., Piñol J., Mozo-Villarias A., et al. . (2014). MultitaskProtDB: a database of multitasking proteins. Nucl. Acids Res. 42, D517–520. 10.1093/nar/gkt1153 - DOI - PMC - PubMed
  42.  
    1. Hiller K., Schobert M., Hundertmark C., Jahn D., Münch R. (2003). JVirGel: calculation of virtual two-dimensional protein gels. Nucl. Acids Res. 31, 3862–3865. 10.1093/nar/gkg536 - DOI - PMC - PubMed
  43.  
    1. Hinode D., Grenier D., Mayrand D. (1995). Purification and characterization of a DnaK-like and a GroEL-like protein from Porphyromonas gingivalis. Anaerobe 1, 283–290. - PubMed
  44.  
    1. Hirokawa T., Boon-Chieng S., Mitaku S. (1998). SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14, 378–379. - PubMed
  45.  
    1. Hosogi Y., Duncan M. J. (2005). Gene expression in Porphyromonas gingivalis after contact with human epithelial cells. Infect. Immun. 73, 2327–2335. 10.1128/IAI.73.4.2327-2335.2005 - DOI - PMC - PubMed
  46.  
    1. Jeffery C. J. (1999). Moonlighting proteins. Trends Biochem. Sci. 24, 8–11. - PubMed
  47.  
    1. Jutras B. L., Verma A., Adams C. A., Brissette C. A., Burns L. H., Whetstine C. R., et al. . (2012). BpaB and EbfC DNA-binding proteins regulate production of the Lyme disease spirochete's infection-associated Erp surface proteins. J. Bacteriol. 194, 778–786. 10.1128/JB.06394-11 - DOI - PMC - PubMed
  48.  
    1. Kall L., Krogh A., Sonnhammer E. L. (2007). Advantages of combined transmembrane topology and signal peptide prediction–the Phobius web server. Nucleic Acids Res. 35, W429–W432. 10.1093/nar/gkm256 - DOI - PMC - PubMed
  49.  
    1. Kanamoto T., Sato S., Nakashima H., Inoue M. (2007). Proliferation of mitogen-stimulated human peripheral blood mononuclear cells is inhibited by extracellular arginine deiminase of Granulicatella elegans isolated from the human mouth. J. Infect. Chemother. 13, 353–355. 10.1007/s10156-007-0546-3 - DOI - PubMed
  50.  
    1. Kanasi E., Dewhirst F. E., Chalmers N. I., Kent R., Jr., Moore A., Hughes C. V., et al. . (2010). Clonal analysis of the microbiota of severe early childhood caries. Caries Res. 44, 485–497. 10.1159/000320158 - DOI - PMC - PubMed
  51.  
    1. Karched M., Bhardwaj R. G., Asikainen S. E. (2015). Coaggregation and biofilm growth of Granulicatella spp. with Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans. BMC Microbiol. 15:114. 10.1186/s12866-015-0439-z - DOI - PMC - PubMed
  52.  
    1. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580. 10.1006/jmbi.2000.4315 - DOI - PubMed
  53.  
    1. Lanotte P., Perivier M., Haguenoer E., Mereghetti L., Burucoa C., Claverol S., et al. . (2013). Proteomic biomarkers associated with Streptococcus agalactiae invasive genogroups. PLoS ONE 8:e54393. 10.1371/journal.pone.0054393 - DOI - PMC - PubMed
  54.  
    1. Lee V. T., Schneewind O. (2001). Protein secretion and the pathogenesis of bacterial infections. Genes. Dev. 15, 1725–1752. 10.1101/gad.896801 - DOI - PubMed
  55.  
    1. Lewthwaite J., Skinner A., Henderson B. (1998). Are molecular chaperones microbial virulence factors? Trends Microbiol. 6, 426–428. - PubMed
  56.  
    1. Lin C. H., Hsu R. B. (2007). Infective endocarditis caused by nutritionally variant streptococci. Am. J. Med. Sci. 334, 235–239. 10.1097/MAJ.0b013e3180a6eeab - DOI - PubMed
  57.  
    1. Liu Y., Chen S., Zhang J., Gao B. (2016). Growth, microcystin-production and proteomic responses of Microcystis aeruginosa under long-term exposure to amoxicillin. Water Res. 93, 141–152. 10.1016/j.watres.2016.01.060 - DOI - PubMed
  58.  
    1. Loprasert S., Whangsuk W., Sallabhan R., Mongkolsuk S. (2004). DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide. Arch. Microbiol. 182, 96–101. 10.1007/s00203-004-0694-0 - DOI - PubMed
  59.  
    1. Lu G. T., Xie J. R., Chen L., Hu J. R., An S. Q., Su H. Z., et al. . (2009). Glyceraldehyde-3-phosphate dehydrogenase of Xanthomonas campestris pv. campestris is required for extracellular polysaccharide production and full virulence. Microbiology 155, 1602–1612. 10.1099/mic.0.023762-0 - DOI - PubMed
  60.  
    1. Madureira P., Baptista M., Vieira M., Magalhães V., Camelo A., Oliveira L., et al. . (2007). Streptococcus agalactiae GAPDH is a virulence-associated immunomodulatory protein. J. Immunol. 178, 1379–1387. 10.4049/jimmunol.178.3.1379 - DOI - PubMed
  61.  
    1. McMillan D. J., Davies M. R., Good M. F., Sriprakash K. S. (2004). Immune response to superoxide dismutase in group A streptococcal infection. FEMS Immunol. Med. Microbiol. 40, 249–256. 10.1016/S0928-8244(04)00003-3 - DOI - PubMed
  62.  
    1. Modun B., Morrissey J., Williams P. (2000). The staphylococcal transferrin receptor: a glycolytic enzyme with novel functions. Trends Microbiol. 8, 231–237. 10.1016/S0966-842X(00)01728-5 - DOI - PubMed
  63.  
    1. Mohammed M. M. A., Pettersen V. K., Nerland A. H., Wiker H. G., Bakken V. (2017). Quantitative proteomic analysis of extracellular matrix extracted from mono- and dual-species biofilms of Fusobacterium nucleatum and Porphyromonas gingivalis. Anaerobe 44, 133–142. 10.1016/j.anaerobe.2017.03.002 - DOI - PubMed
  64.  
    1. Natale P., Brüser T., Driessen A. J. (2008). Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane–distinct translocases and mechanisms. Biochim. Biophys. Acta 1778, 1735–1756. 10.1016/j.bbamem.2007.07.015 - DOI - PubMed
  65.  
    1. Nelson D., Goldstein J. M., Boatright K., Harty D. W., Cook S. L., Hickman P. J., et al. . (2001). pH-regulated secretion of a glyceraldehyde-3-phosphate dehydrogenase from Streptococcus gordonii FSS2: purification, characterization, and cloning of the gene encoding this enzyme. J. Dent Res. 80, 371–377. 10.1177/00220345010800011301 - DOI - PubMed
  66.  
    1. Oliveira S. C., Splitter G. A. (1996). Immunization of mice with recombinant L7/L12 ribosomal protein confers protection against Brucella abortus infection. Vaccine 14, 959–962. - PubMed
  67.  
    1. Olsen I., Singhrao S. K., Potempa J. (2018). Citrullination as a plausible link to periodontitis, rheumatoid arthritis, atherosclerosis and Alzheimer's disease. J. Oral Microbiol. 10:1487742. 10.1080/20002297.2018.1487742 - DOI - PMC - PubMed
  68.  
    1. Oscarsson J., Karched M., Thay B., Chen C., Asikainen S. (2008). Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells. BMC Microbiol. 8:206. 10.1186/1471-2180-8-206 - DOI - PMC - PubMed
  69.  
    1. Pallen M. J. (2002). The ESAT-6/WXG100 superfamily – and a new Gram-positive secretion system? Trends Microbiol. 10, 209–212. 10.1016/S0966-842X(02)02345-4 - DOI - PubMed
  70.  
    1. Pavkova I., Kopeckova M., Klimentova J., Schmidt M., Sheshko V., Sobol M., et al. . (2017). The Multiple Localized Glyceraldehyde-3-Phosphate Dehydrogenase contributes to the attenuation of the francisella tularensis dsba deletion mutant. Front. Cell Infect. Microbiol. 7:503. 10.3389/fcimb.2017.00503 - DOI - PMC - PubMed
  71.  
    1. Ribeiro L. A., Azevedo V., Le Loir Y., Oliveira S. C., Dieye Y., Piard J. C., et al. . (2002). Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: a first step towards food-grade live vaccines against brucellosis. Appl. Environ. Microbiol. 68, 910–916. 10.1128/AEM.68.2.910-916.2002 - DOI - PMC - PubMed
  72.  
    1. Romero P., López R., Garcia E. (2004). Characterization of LytA-like N-acetylmuramoyl-L-alanine amidases from two new Streptococcus mitis bacteriophages provides insights into the properties of the major pneumococcal autolysin. J. Bacteriol. 186, 8229–8239. 10.1128/JB.186.24.8229-8239.2004 - DOI - PMC - PubMed
  73.  
    1. Rose R. W., Brüser T., Kissinger J. C., Pohlschröder M. (2002). Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol. Microbiol. 45, 943–950. 10.1046/j.1365-2958.2002.03090.x - DOI - PubMed
  74.  
    1. Ruiz-Perez F., Nataro J. P. (2014). Bacterial serine proteases secreted by the autotransporter pathway: classification, specificity, and role in virulence. Cell Mol. Life Sci. 71, 745–770. 10.1007/s00018-013-1355-8 - DOI - PMC - PubMed
  75.  
    1. Ruiz-Perez F., Wahid R., Faherty C. S., Kolappaswamy K., Rodriguez L., Santiago A., et al. . (2011). Serine protease autotransporters from Shigella flexneri and pathogenic Escherichia coli target a broad range of leukocyte glycoproteins. Proc. Natl. Acad. Sci. U.S.A 108, 12881–12886. 10.1073/pnas.1101006108 - DOI - PMC - PubMed
  76.  
    1. Ruoff K. L. (1991). Nutritionally variant streptococci. Clin. Microbiol. Rev. 4, 184–190. - PMC - PubMed
  77.  
    1. Schneewind O., Missiakas D. M. (2012). Protein secretion and surface display in Gram-positive bacteria. Philos. Trans. R Soc. Lond. B Biol. Sci. 367, 1123–1139. 10.1098/rstb.2011.0210 - DOI - PMC - PubMed
  78.  
    1. Shi X. Z., Feng X. W., Sun J. J., Yang M. C., Lan J. F., Zhao X. F., et al. . (2016). Involvement of a LysM and putative peptidoglycan-binding domain-containing protein in the antibacterial immune response of kuruma shrimp Marsupenaeus japonicus. Fish Shellfish Immunol. 54, 489–498. 10.1016/j.fsi.2016.04.134 - DOI - PubMed
  79.  
    1. Siqueira J. F., Jr., Rôças I. N. (2006). Catonella morbi and Granulicatella adiacens: new species in endodontic infections. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 102, 259–264. 10.1016/j.tripleo.2005.09.021 - DOI - PubMed
  80.  
    1. Stobernack T., Glasner C., Junker S., Gabarrini G., de Smit M., de Jong A., et al. . (2016). Extracellular proteome and citrullinome of the oral Pathogen Porphyromonas gingivalis. J. Proteome Res. 15, 4532–4543. 10.1021/acs.jproteome.6b00634 - DOI - PubMed
  81.  
    1. Suriyanarayanan T., Qingsong L., Kwang L. T., Mun L. Y., Truong T., Seneviratne C. J. (2018). Quantitative proteomics of strong and weak biofilm formers of enterococcus faecalis reveals novel regulators of biofilm formation. Mol. Cell Proteomics 17, 643–654. 10.1074/mcp.RA117.000461 - DOI - PMC - PubMed
  82.  
    1. Terao Y., Yamaguchi M., Hamada S., Kawabata S. (2006). Multifunctional glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pyogenes is essential for evasion from neutrophils. J. Biol. Chem. 281, 14215–14223. 10.1074/jbc.M513408200 - DOI - PubMed
  83.  
    1. Terrasse R., Amoroso A., Vernet T., Di Guilmi A. M. (2015). Streptococcus pneumoniae GAPDH Is Released by Cell Lysis and interacts with peptidoglycan. PLoS ONE 10:e0125377. 10.1371/journal.pone.0125377 - DOI - PMC - PubMed
  84.  
    1. Tortosa P., Albano M., Dubnau D. (2000). Characterization of ylbF, a new gene involved in competence development and sporulation in Bacillus subtilis. Mol. Microbiol. 35, 1110–1119. 10.1046/j.1365-2958.2000.01779.x - DOI - PubMed
  85.  
    1. Tunio S. A., Oldfield N. J., Berry A. D. A, Ala'Aldeen Wooldridge, K. G., Turner D. P. (2010). The moonlighting protein fructose-1, 6-bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion. Mol. Microbiol. 76, 605–615. 10.1111/j.1365-2958.2010.07098.x - DOI - PubMed
  86.  
    1. von Mering C., Jensen L. J., Snel B., Hooper S. D., Krupp M., Foglierini M., et al. . (2005). STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucl. Acids Res. 33, D433–D437. 10.1093/nar/gki005 - DOI - PMC - PubMed
  87.  
    1. Wang G., Xia Y., Cui J., Gu Z., Song Y., Chen Y. Q., et al. . (2014). The roles of moonlighting proteins in bacteria. Curr. Issues Mol. Biol. 16, 15–22. 10.21775/cimb.016.015 - DOI - PubMed
  88.  
    1. Ye J., Zhang Y., Cui H., Liu J., Wu Y., Cheng Y., et al. . (2018). WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Res. 46, W71–W75. 10.1093/nar/gky400 - DOI - PMC - PubMed
  89.  
    1. Yu N. Y., Wagner J. R., Laird M. R., Melli G., Rey S., Lo R., et al. . (2010). PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 1608–1615. 10.1093/bioinformatics/btq249 - DOI - PMC - PubMed
  90.  
    1. Yuan Z., Mattick J. S., Teasdale R. D. (2004). SVMtm: support vector machines to predict transmembrane segments. J. Comput. Chem. 25, 632–636. 10.1002/jcc.10411 - DOI - PubMed
  91.  
    1. Zhong Q., Zhao Y., Chen T., Yin S., Yao X., Wang J., et al. . (2014). A functional peptidoglycan hydrolase characterized from T4SS in 89K pathogenicity island of epidemic Streptococcus suis serotype 2. BMC Microbiol. 14:73. 10.1186/1471-2180-14-73 - DOI - PMC - PubMed
  92.  
    1. Zijnge V., Kieselbach T., Oscarsson J. (2012). Proteomics of protein secretion by Aggregatibacter actinomycetemcomitans. PLoS ONE 7:e41662. 10.1371/journal.pone.0041662 - DOI - PMC - PubMed