Early Diagnosis of Classic Homocystinuria in Kuwait through Newborn Screening: A 6-Year Experience

Affiliations

17 August 2021

-

doi: 10.3390/ijns7030056


Abstract

Kuwait is a small Arabian Gulf country with a high rate of consanguinity and where a national newborn screening program was expanded in October 2014 to include a wide range of endocrine and metabolic disorders. A retrospective study conducted between January 2015 and December 2020 revealed a total of 304,086 newborns have been screened in Kuwait. Six newborns were diagnosed with classic homocystinuria with an incidence of 1:50,000, which is not as high as in Qatar but higher than the global incidence. Molecular testing for five of them has revealed three previously reported pathogenic variants in the CBS gene, c.969G>A, p.(Trp323Ter); c.982G>A, p.(Asp328Asn); and the Qatari founder variant c.1006C>T, p.(Arg336Cys). This is the first study to review the screening of newborns in Kuwait for classic homocystinuria, starting with the detection of elevated blood methionine and providing a follow-up strategy for positive results, including plasma total homocysteine and amino acid analyses. Further, we have demonstrated an increase in the specificity of the current newborn screening test for classic homocystinuria by including the methionine to phenylalanine ratio along with the elevated methionine blood levels in first-tier testing. Here, we provide evidence that the newborn screening in Kuwait has led to the early detection of classic homocystinuria cases and enabled the affected individuals to lead active and productive lives.

Keywords: classic homocystinuria; incidence; methionine; molecular testing; newborn screening; total homocysteine.

Conflict of interest statement

The authors declare no conflict of interest.


Figures


Similar articles

Diagnosis of Classic Homocystinuria in Two Boys Presenting with Acute Cerebral Venous Thrombosis and Neurologic Dysfunction after Normal Newborn Screening.

Asamoah A, Wei S, Jackson KE, Hersh JH, Levy H.Int J Neonatal Screen. 2021 Jul 23;7(3):48. doi: 10.3390/ijns7030048.PMID: 34449521 Free PMC article.

Newborn screening for remethylation disorders and vitamin B12 deficiency-evaluation of new strategies in cohorts from Qatar and Germany.

Gramer G, Abdoh G, Ben-Omran T, Shahbeck N, Ali R, Mahmoud L, Fang-Hoffmann J, Hoffmann GF, Al Rifai H, Okun JG.World J Pediatr. 2017 Apr;13(2):136-143. doi: 10.1007/s12519-017-0003-z. Epub 2017 Jan 15.PMID: 28101774

Newborn population screening for classic homocystinuria by determination of total homocysteine from Guthrie cards.

Gan-Schreier H, Kebbewar M, Fang-Hoffmann J, Wilrich J, Abdoh G, Ben-Omran T, Shahbek N, Bener A, Al Rifai H, Al Khal AL, Lindner M, Zschocke J, Hoffmann GF.J Pediatr. 2010 Mar;156(3):427-32. doi: 10.1016/j.jpeds.2009.09.054. Epub 2009 Nov 14.PMID: 19914636

The Spectrum of Mutations of Homocystinuria in the MENA Region.

Al-Sadeq DW, Nasrallah GK.Genes (Basel). 2020 Mar 20;11(3):330. doi: 10.3390/genes11030330.PMID: 32245022 Free PMC article. Review.

Early Development of Newborn Screening for HCU and Current Challenges.

Levy HL.Int J Neonatal Screen. 2021 Oct 25;7(4):67. doi: 10.3390/ijns7040067.PMID: 34842599 Free PMC article. Review.


Cited by

Current and Novel Therapeutical Approaches of Classical Homocystinuria in Childhood With Special Focus on Enzyme Replacement Therapy, Liver-Directed Therapy and Gene Therapy.

Bittmann S, Villalon G, Moschuring-Alieva E, Luchter E, Bittmann L.J Clin Med Res. 2023 Feb;15(2):76-83. doi: 10.14740/jocmr4843. Epub 2023 Feb 28.PMID: 36895619 Free PMC article. Review.

Precision information extraction for rare disease epidemiology at scale.

Kariampuzha WZ, Alyea G, Qu S, Sanjak J, Mathé E, Sid E, Chatelaine H, Yadaw A, Xu Y, Zhu Q.J Transl Med. 2023 Feb 28;21(1):157. doi: 10.1186/s12967-023-04011-y.PMID: 36855134 Free PMC article.

Association of selected genetic variants in CBS and MTHFR genes in a cohort of children with homocystinuria in Sri Lanka.

Samarasinghe N, Mahaliyanage D, De Silva S, Jasinge E, Punyasiri N, Dilanthi HW.J Genet Eng Biotechnol. 2022 Dec 13;20(1):164. doi: 10.1186/s43141-022-00449-7.PMID: 36512268 Free PMC article.


KMEL References


References

  1.  
    1. Kuwait Government Online Geography of Kuwait. [(accessed on 14 April 2021)]; Available online: https://www.e.gov.kw/sites/kgoenglish/Pages/Visitors/AboutKuwait/KuwaitA....
  2.  
    1. Kuwait Government Online Citizens and Residents. [(accessed on 14 April 2021)]; Available online: https://www.e.gov.kw/sites/kgoenglish/Pages/CitizensResidents/citizensAn....
  3.  
    1. Al-Awadi S.A., Moussa M.A., Naghuib K.K., Farag T.I., Teebi A.S., El-Khalifa M., El-Dossary L. Consanguinity among the Kuwaiti population. Clin. Genet. 2008;27:483–486. doi: 10.1111/j.1399-0004.1985.tb00236.x. - DOI - PubMed
  4.  
    1. Tadmouri G.O., Nair P., Obeid T., Al Ali M.T., Al Khaja N., Hamamy H.A. Consanguinity and reproductive health among Arabs. Reprod. Health. 2009;6:17. doi: 10.1186/1742-4755-6-17. - DOI - PMC - PubMed
  5.  
    1. Hoss G.R.W., Sperb-Ludwig F., Schwartz I.V.D., Blom H.J. Classical homocystinuria: A common inborn error of metabolism? An epidemiological study based on genetic databases. Mol. Genet. Genom. Med. 2020;8:e1214. doi: 10.1002/mgg3.1214. - DOI - PMC - PubMed
  6.  
    1. El-Said M.F., Badii R., Bessisso M., Shahbek N., El-Ali M.G., El-Marikhie M., El-Zyoid M., Salem M., Bener A., Hoffmann G.F., et al. A common mutation in theCBSgene explains a high incidence of homocystinuria in the Qatari population. Hum. Mutat. 2006;27:719. doi: 10.1002/humu.9436. - DOI - PubMed
  7.  
    1. Gan-Schreier H., Kebbewar M., Fang-Hoffmann J., Wilrich J., Abdoh G., Ben-Omran T., Shahbek N., Bener A., Al Rifai H., Al Khal A.L., et al. Newborn Population Screening for Classic Homocystinuria by Determination of Total Homocysteine from Guthrie Cards. J. Pediatr. 2010;156:427–432. doi: 10.1016/j.jpeds.2009.09.054. - DOI - PubMed
  8.  
    1. Ismail H.M., Krishnamoorthy N., Al-Dewik N., Zayed H., Mohamed N.A., Di Giacomo V., Gupta S., Häberle J., Thöny B., Blom H.J., et al. In silico and in vivo models for Qatari-specific classical homocystinuria as basis for development of novel therapies. Hum. Mutat. 2019;40:230–240. doi: 10.1002/humu.23682. - DOI - PMC - PubMed
  9.  
    1. Refsum H., Fredriksen Å., Meyer K., Ueland P.M., Kase B.F. Birth prevalence of homocystinuria. J. Pediatr. 2004;144:830–832. doi: 10.1016/j.jpeds.2004.03.004. - DOI - PubMed
  10.  
    1. Skovby F., Gaustadnes M., Mudd S.H. A revisit to the natural history of homocystinuria due to cystathionine β-synthase deficiency. Mol. Genet. Metab. 2010;99:1–3. doi: 10.1016/j.ymgme.2009.09.009. - DOI - PMC - PubMed
  11.  
    1. Mudd S.H., Finkelstein J.D., Irreverre F., Laster L. Homocystinuria: An Enzymatic Defect. Science. 1964;143:1443–1445. doi: 10.1126/science.143.3613.1443. - DOI - PubMed
  12.  
    1. Mudd S.H., Skovby F., Levy H.L. The natural history of homocystinura due to cystathionine β-synthase deficiency. Am. J. Hum. Genet. 1985;37:1–31. - PMC - PubMed
  13.  
    1. Morris A.A.M., Kožich V., Santra S., Andria G., Ben-Omran T.I.M., Chakrapani A.B., Crushell E., Henderson M.J., Hochuli M., Huemer M., et al. Guidelines for the diagnosis and management of cystathionine beta-synthase deficiency. J. Inherit. Metab. Dis. 2017;40:49–74. doi: 10.1007/s10545-016-9979-0. - DOI - PMC - PubMed
  14.  
    1. Keller R., Chrastina P., Pavlikova M., Gouveia S., Ribes A., Kölker S., Blom H.J., Baumgartner M.R., Bártl J., Dionisi-Vici C., et al. Newborn screening for homocystinurias: Recent recommendations versus current practice. J. Inherit. Metab. Dis. 2019;42:128–139. doi: 10.1002/jimd.12034. - DOI - PubMed
  15.  
    1. Huemer M., Kožich V., Rinaldo P., Baumgartner M.R., Merinero B., Pasquini E., Ribes A., Blom H. Newborn screening for homocystinurias and methylation disorders: Systematic review and proposed guidelines. J. Inherit. Metab. Dis. 2015;38:1007–1019. doi: 10.1007/s10545-015-9830-z. - DOI - PMC - PubMed
  16.  
    1. Al-Sadeq D.W., Nasrallah G.K. The Spectrum of Mutations of Homocystinuria in the MENA Region. Genes. 2020;11:330. doi: 10.3390/genes11030330. - DOI - PMC - PubMed
  17.  
    1. ACT Sheets and Algorithms. [(accessed on 13 April 2021)]; Available online: https://www.acmg.net/ACMG/Medical-Genetics-Practice-Resources/ACT_Sheets....
  18.  
    1. Wilcken B., Wiley V., Hammond J., Carpenter K. Screening Newborns for Inborn Errors of Metabolism by Tandem Mass Spectrometry. N. Engl. J. Med. 2003;348:2304–2312. doi: 10.1056/NEJMoa025225. - DOI - PubMed
  19.  
    1. Schulze A., Lindner M., Kohlmüller D., Olgemöller K., Mayatepek E., Hoffmann G.F. Expanded Newborn Screening for Inborn Errors of Metabolism by Electrospray Ionization-Tandem Mass Spectrometry: Results, Outcome, and Implications. Pediatrics. 2003;111:1399–1406. doi: 10.1542/peds.111.6.1399. - DOI - PubMed
  20.  
    1. Rashed M.S., Ozand P.T., Bucknall M., Little D. Diagnosis of Inborn Errors of Metabolism from Blood Spots by Acylcarnitines and Amino Acids Profiling Using Automated Electrospray Tandem Mass Spectrometry. Pediatr. Res. 1995;38:324–331. doi: 10.1203/00006450-199509000-00009. - DOI - PubMed
  21.  
    1. Schulze A., Kohlmueller D., Mayatepek E. Sensitivity of electrospray-tandem mass spectrometry using the phenylalanine/tyrosine-ratio for differential diagnosis of hyperphenylalaninemia in neonates. Clin. Chim. Acta. 1999;283:15–20. doi: 10.1016/S0009-8981(99)00016-9. - DOI - PubMed
  22.  
    1. Pei J., Li X.-Y. Determination of underivatized amino acids by high-performance liquid chromatography and electrochemical detection at an amino acid oxidase immobilized CuPtCl 6 modified electrode. Anal. Bioanal. Chem. 2000;367:707–713. doi: 10.1007/s002160000447. - DOI - PubMed
  23.  
    1. Shipchandler M.T., Moore E.G. Rapid, fully automated measurement of plasma homocyst(e)ine with the Abbott IMx analyzer. Clin. Chem. 1995;41:991–994. doi: 10.1093/clinchem/41.7.991. - DOI - PubMed
  24.  
    1. Nexo E., Engbaek F., Ueland P.M., Westby C., O’Gorman P., Johnston C., Kase B.F., Guttormsen A.B., Alfheim I., McPartlin J., et al. Evaluation of Novel Assays in Clinical Chemistry: Quantification of Plasma Total Homocysteine. Clin. Chem. 2000;46:1150–1156. doi: 10.1093/clinchem/46.8.1150. - DOI - PubMed
  25.  
    1. Bártl J., Chrastina P., Krijt J., Hodík J., Pešková K., Kožich V. Simultaneous determination of cystathionine, total homocysteine, and methionine in dried blood spots by liquid chromatography/tandem mass spectrometry and its utility for the management of patients with homocystinuria. Clin. Chim. Acta. 2014;437:211–217. doi: 10.1016/j.cca.2014.07.028. - DOI - PubMed
  26.  
    1. Stabler S.P., Korson M., Jethva R., Allen R.H., Kraus J.P., Spector E.B., Wagner C., Mudd S.H. JIMD Reports. Springer; Berlin/Heidelberg, Germany: 2013. Metabolic profiling of total homocysteine and related compounds in hyperho-mocysteinemia: Utility and limitations in diagnosing the cause of puzzling thrombophilia in a family; pp. 149–163. - PMC - PubMed
  27.  
    1. Mudd S.H. Hypermethioninemias of genetic and non-genetic origin: A review. Am. J. Med. Genet. Part C Semin. Med. Genet. 2011;157:3–32. doi: 10.1002/ajmg.c.30293. - DOI - PubMed
  28.  
    1. Chace D.H., Hillman S.L., Millington D.S., Kahler S.G., Adam B.W., Levy H.L. Rapid diagnosis of homocystinuria and other hypermethioninemias from newborns’ blood spots by tandem mass spectrometry. Clin. Chem. 1996;42:349–355. doi: 10.1093/clinchem/42.3.349. - DOI - PubMed
  29.  
    1. Okun J.G., Gan-Schreier H., Ben-Omran T., Schmidt K.V., Fang-Hoffmann J., Gramer G., Abdoh G., Shahbeck N., Al Rifai H., Al Khal A.L., et al. JIMD Reports. Springer; Berlin/Heidelberg, Germany: 2016. Newborn Screening for Vitamin B6 Non-responsive Classical Homo-cystinuria: Systematical Evaluation of a Two-Tier Strategy; pp. 87–94. - PMC - PubMed
  30.  
    1. Hoedt A.E.T., Van Kempen A., Boelen A., Duran M., Kemper-Proper E.A., Oey-Spauwen M.J.W., Wijburg F.A., Bosch A.M. High incidence of hypermethioninaemia in a single neonatal intensive care unit detected by a newly introduced neonatal screening programme. J. Inherit. Metab. Dis. 2007;30:978. doi: 10.1007/s10545-007-0701-0. - DOI - PubMed
  31.  
    1. Peterschmitt M.J., Simmons J.R., Levy H.L. Reduction of False Negati.ve Results in Screening of Newborns for Homocystinuria. N. Engl. J. Med. 1999;341:1572–1576. doi: 10.1056/NEJM199911183412103. - DOI - PubMed
  32.  
    1. Turgeon C.T., Magera M.J., Cuthbert C.D., Loken P.R., Gavrilov D.K., Tortorelli S., Raymond K.M., Oglesbee D., Rinaldo P., Matern D. Determination of Total Homocysteine, Methylmalonic Acid, and 2-Methylcitric Acid in Dried Blood Spots by Tandem Mass Spectrometry. Clin. Chem. 2010;56:1686–1695. doi: 10.1373/clinchem.2010.148957. - DOI - PubMed
  33.  
    1. Naughten E.R., Yap S., Mayne P.D. Newborn screening for homocystinuria: Irish and world experience. Eur. J. Nucl. Med. Mol. Imaging. 1998;157:S84–S87. doi: 10.1007/PL00014310. - DOI - PubMed
  34.  
    1. Sacharow S.J., Picker J.D., Levy H.L. Homocystinuria Caused by Cystathionine Beta-Synthase Deficiency. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Mirzaa G., Amemiya A., editors. Reviews in GeneReviews® [Internet] University of Washington; Seattle, DC, USA: 2004.
  35.  
    1. Yap S., Naughten E. Homocystinuria due to cystathionine β-synthase deficiency in Ireland: 25 years’ experience of a newborn screened and treated population with reference to clinical outcome and biochemical control. J. Inherit. Metab. Dis. 1998;21:738–747. doi: 10.1023/A:1005445132327. - DOI - PubMed
  36.  
    1. Bowron A., Barton A., Scott J., Stansbie D. Blood Spot Homocysteine: A Feasibility and Stability Study. Clin. Chem. 2005;51:257–258. doi: 10.1373/clinchem.2004.041640. - DOI - PubMed
  37.  
    1. Andersson A., Isaksson A., Hultberg B. Homocysteine Export from Erythrocytes and Its Implication for Plasma Sampling. Clin. Chem. 1992;38:1311–1315. doi: 10.1093/clinchem/38.7.1311. - DOI - PubMed
  38.  
    1. Fiskerstrand T., Refsum H., Kvalheim G., Ueland P.M. Homocysteine and other thiols in plasma and urine: Automated determination and sample stability. Clin. Chem. 1993;39:263–271. doi: 10.1093/clinchem/39.2.263. - DOI - PubMed
  39.  
    1. Gramer G., Abdoh G., Ben-Omran T., Shahbeck N., Ali R., Mahmoud L., Fang-Hoffmann J., Hoffmann G.F., Al Rifai H., Okun J.G. Newborn screening for remethylation disorders and vitamin B12 deficiency-evaluation of new strategies in cohorts from Qatar and Germany. World J. Pediatr. 2017;13:136–143. doi: 10.1007/s12519-017-0003-z. - DOI - PubMed
  40.  
    1. Al-Dewik N., Ali A., Mahmoud Y., Shahbeck N., Ali R., Mahmoud L., Al-Mureikhi M., Al-Mesaifri F., Musa S., El-Akouri K., et al. Natural history, with clinical, biochemical, and molecular characterization of classical homocystinuria in the Qatari population. J. Inherit. Metab. Dis. 2019;42:818–830. doi: 10.1002/jimd.12099. - DOI - PubMed
  41.  
    1. Yamada K., Yokoyama K., Aoki K., Taketani T., Yamaguchi S. Long-Term Outcomes of Adult Patients with Homocystinuria before and after Newborn Screening. Int. J. Neonatal Screen. 2020;6:60. doi: 10.3390/ijns6030060. - DOI - PMC - PubMed
  42.  
    1. Moammar H., Cheriyan G., Mathew R., Al-Sannaa N. Incidence and patterns of inborn errors of metabolism in the Eastern Province of Saudi Arabia, 1983–2008. Ann. Saudi Med. 2010;30:271–277. doi: 10.4103/0256-4947.65254. - DOI - PMC - PubMed
  43.  
    1. Al-Arrayed S., Hamamy H. The changing profile of consanguinity rates in bahrain, 1990–2009. J. Biosoc. Sci. 2011;44:313–319. doi: 10.1017/S0021932011000666. - DOI - PubMed
  44.  
    1. Golbahar J., Al-Jishi E., Altayab D., Carreon E., Bakhiet M., Alkhayyat H. Selective newborn screening of inborn errors of amino acids, organic acids and fatty acids metabolism in the Kingdom of Bahrain. Mol. Genet. Metab. 2013;110:98–101. doi: 10.1016/j.ymgme.2013.07.006. - DOI - PubMed
  45.  
    1. Wasim M., Awan F.R., Khan H.N., Tawab A., Iqbal M., Ayesha H. Aminoacidopathies: Prevalence, Etiology, Screening, and Treatment Options. Biochem. Genet. 2018;56:7–21. doi: 10.1007/s10528-017-9825-6. - DOI - PubMed
  46.  
    1. Al-Hammadi M.I. Presentation of Qatari Identity at National Museum of Qatar: Between Imagination and Reality. J. Conserv. Mus. Stud. 2018;16 doi: 10.5334/jcms.171. - DOI
  47.  
    1. Shibata N., Hasegawa Y., Yamada K., Kobayashi H., Purevsuren J., Yang Y., Dung V.C., Khanh N.N., Verma I.C., Bijarnia-Mahay S., et al. Diversity in the incidence and spectrum of organic acidemias, fatty acid oxidation disorders, and amino acid disorders in Asian countries: Selective screening vs. expanded newborn screening. Mol. Genet. Metab. Rep. 2018;16:5–10. doi: 10.1016/j.ymgmr.2018.05.003. - DOI - PMC - PubMed
  48.  
    1. Zaidi S., Faiyaz-Ul-Haque M., Shuaib T., Balobaid A., Rahbeeni Z., Abalkhail H., Al-Abdullatif A., Al-Hassnan Z., Peltekova I., Al-Owain M. Clinical and molecular findings of 13 families from Saudi Arabia and a family from Sudan with homocystinuria. Clin. Genet. 2011;81:563–570. doi: 10.1111/j.1399-0004.2011.01690.x. - DOI - PubMed
  49.  
    1. Silao C.L.T., Fabella T.D.F., Rama K.I.D., Estrada S.C. Novel cystathionine β-synthase gene mutations in a Filipino patient with classic homocystinuria. Pediatr. Int. 2015;57:884–887. doi: 10.1111/ped.12666. - DOI - PubMed
  50.  
    1. Kaur R., Attri S.V., Saini A.G., Sankhyan N., Singh S., Faruq M., Ramprasad V.L., Sharda S., Murugan S. Seven novel genetic variants in a North Indian cohort with classical homocystinuria. Sci. Rep. 2020;10:17299. doi: 10.1038/s41598-020-73475-5. - DOI - PMC - PubMed